An estimate of the free term of a~non-negative trigonometric polynomial with integer coefficients
Izvestiya. Mathematics , Tome 60 (1996) no. 6, pp. 1123-1182
Voir la notice de l'article provenant de la source Math-Net.Ru
We denote by $M_Z^{\downarrow}(n)$ (resp., $K_Z^{\downarrow}(n)$) the smallest value of $a_0$ that can occur in a non-negative trigonometric polynomial
$$
\sum_{k=0}^n a_k\cos(kx)
$$
with non-negative integer coefficients $a_1\geqslant a_2\geqslant\dots\geqslant a_n$ such that $a_n\geqslant 1$ (resp., $\sum_{k=1}^n a_k=n$). We prove that for all natural numbers $n\geqslant 3$
$$
\dfrac{\ln^2 n}{\ln\ln n}\ll K_Z^\downarrow(n)\ll M_Z^\downarrow(n)\ll(\ln n)^3.
$$
@article{IM2_1996_60_6_a1,
author = {A. S. Belov and S. V. Konyagin},
title = {An estimate of the free term of a~non-negative trigonometric polynomial with integer coefficients},
journal = {Izvestiya. Mathematics },
pages = {1123--1182},
publisher = {mathdoc},
volume = {60},
number = {6},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a1/}
}
TY - JOUR AU - A. S. Belov AU - S. V. Konyagin TI - An estimate of the free term of a~non-negative trigonometric polynomial with integer coefficients JO - Izvestiya. Mathematics PY - 1996 SP - 1123 EP - 1182 VL - 60 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a1/ LA - en ID - IM2_1996_60_6_a1 ER -
%0 Journal Article %A A. S. Belov %A S. V. Konyagin %T An estimate of the free term of a~non-negative trigonometric polynomial with integer coefficients %J Izvestiya. Mathematics %D 1996 %P 1123-1182 %V 60 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a1/ %G en %F IM2_1996_60_6_a1
A. S. Belov; S. V. Konyagin. An estimate of the free term of a~non-negative trigonometric polynomial with integer coefficients. Izvestiya. Mathematics , Tome 60 (1996) no. 6, pp. 1123-1182. http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a1/