Systems of conservation laws in the context of the projective theory of congruences
Izvestiya. Mathematics , Tome 60 (1996) no. 6, pp. 1097-1122.

Voir la notice de l'article provenant de la source Math-Net.Ru

We associate to a system of $n$ conservation laws $$ u_t^i=f^i(u)_x, \qquad i=1,\dots,n, $$ an $n$-parameter family of lines in $(n+1)$-dimensional space $A^{n+1}$ given by the equations $$ y^i=u^iy^0-f^i(u), \qquad i=1,\dots,n. $$ Thereby we establish a correspondence between the reciprocal transformations of the system of conservation laws and the projective transformations of the space $A^{n+1}$, the rarefaction curves of the system of conservation laws and the developable surfaces of the associated family of lines, the Temple class of systems of conservation laws and the class of families of lines whose developable surfaces are either flat or conic. In the particular case $n=2$ the systems of the Temple class are explicitly described in terms of the theory of congruences.
@article{IM2_1996_60_6_a0,
     author = {S. I. Agafonov and E. V. Ferapontov},
     title = {Systems of conservation laws in the context of the projective theory of congruences},
     journal = {Izvestiya. Mathematics },
     pages = {1097--1122},
     publisher = {mathdoc},
     volume = {60},
     number = {6},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a0/}
}
TY  - JOUR
AU  - S. I. Agafonov
AU  - E. V. Ferapontov
TI  - Systems of conservation laws in the context of the projective theory of congruences
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 1097
EP  - 1122
VL  - 60
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a0/
LA  - en
ID  - IM2_1996_60_6_a0
ER  - 
%0 Journal Article
%A S. I. Agafonov
%A E. V. Ferapontov
%T Systems of conservation laws in the context of the projective theory of congruences
%J Izvestiya. Mathematics 
%D 1996
%P 1097-1122
%V 60
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a0/
%G en
%F IM2_1996_60_6_a0
S. I. Agafonov; E. V. Ferapontov. Systems of conservation laws in the context of the projective theory of congruences. Izvestiya. Mathematics , Tome 60 (1996) no. 6, pp. 1097-1122. http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a0/

[1] Rozhdestvenskii V. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968 | Zbl

[2] Lax P. O., “Hyperbolic systems of conservation laws, II”, Comm. in Pure and Appl. Math., 10 (1957), 537–566 | DOI | MR | Zbl

[3] Temple B., “Systems of conservations laws with invariant submanifolds”, Transactions of the American Mathematical Society, 280:2 (1983), 781–795 | DOI | MR | Zbl

[4] Alekseevskaya T. V., “Study of the system of quasilinear equations for isotachophoresis”, Adv. in Appl. Math., 11:1 (1990), 63–107 | DOI | MR | Zbl

[5] Dubrovin B. A., Geometry of $2D$ topological field theories, Preprint SISSA–89/94/FM, SISSA, Trieste, 1994, {hep-th/9407018} | Zbl

[6] Mokhov O. I., “Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations”, Trans. Amer. Math. Soc. Ser. 2, 170 (1995), 121–151 | MR | Zbl

[7] Mokhov O. I., Ferapontov E. V., “Uravneniya assotsiativnosti dvumernoi topologicheskoi teorii polya kak integriruemye gamiltonovy sistemy gidrodinamicheskogo tipa”, Funkts. analiz i ego prilozh., 30:3 (1996), 62–72 | MR | Zbl

[8] Ferapontov E. V., Mokhov O. I., “The equations of associativity as hydrodynamic type systems: Hamiltonian representation and the integrability”, Proc. of the workshop “Nonlinear Physics. Theory and experiment”, World Scientific Singapore, Italy, Lecce, 1995 | MR

[9] Rogers C., Shadwick W. F., Backlund transformations and their Applications, Academic Press, N.Y., 1982 | MR

[10] Rogers C., “Reciprocal transformations and their Applications. Nonlinear Evolutions”, Proc. of the 5th Workshop on Nonlinear Evolution Equations (France), 1987, 109–123 | MR

[11] Ferapontov E. V., “Preobrazovaniya po resheniyu i ikh invarianty”, Differents. uravn., 25:7 (1989), 1256–1265 | MR | Zbl

[12] Ferapontov E. V., “Avtopreobrazovaniya po resheniyu i gidrodinamicheskie simmetrii”, Differents. uravn., 27:7 (1991), 1250–1262 | MR

[13] Ferapontov E. V., “Dupin hypersurfaces and integrable hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants”, Diff. Geometry and its Appl., 5 (1995), 121–152 | DOI | MR | Zbl

[14] Finikov S. P., Teoriya kongruentsii, Gostekhizdat, M.–L., 1950 | MR

[15] Tsarev S. P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | Zbl

[16] Ferapontov E. V., “Gamiltonovy sistemy gidrodinamicheskogo tipa i ikh realizatsiya na giperpoverkhnostyakh psevdoevklidova prostranstva”, Problemy geometrii, 22, VINITI, 1990, 59–96 | MR | Zbl

[17] Rozenfeld B. A., Mnogomernye prostranstva, Fizmatlit, M., 1966 | MR

[18] Little J. B., “On Lie's approach to the study of translation manifolds”, J. Diff. Geom., 26:2 (1987), 253–272 | MR | Zbl

[19] Lie S., “Translations - $M_3$ zweiter art im $R_4$”, Gesammelte Abhandlungen, Band VII, Abh. XXIX, Teubner, Leipzig, 1960

[20] Ferapontov E. V., “Preobrazovaniya Laplasa sistem gidrodinamicheskogo tipa v invariantakh Rimana”, Teor. i mat. fiz., 110:1 (1997), 86–97 | MR | Zbl