Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1996_60_6_a0, author = {S. I. Agafonov and E. V. Ferapontov}, title = {Systems of conservation laws in the context of the projective theory of congruences}, journal = {Izvestiya. Mathematics }, pages = {1097--1122}, publisher = {mathdoc}, volume = {60}, number = {6}, year = {1996}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a0/} }
TY - JOUR AU - S. I. Agafonov AU - E. V. Ferapontov TI - Systems of conservation laws in the context of the projective theory of congruences JO - Izvestiya. Mathematics PY - 1996 SP - 1097 EP - 1122 VL - 60 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a0/ LA - en ID - IM2_1996_60_6_a0 ER -
S. I. Agafonov; E. V. Ferapontov. Systems of conservation laws in the context of the projective theory of congruences. Izvestiya. Mathematics , Tome 60 (1996) no. 6, pp. 1097-1122. http://geodesic.mathdoc.fr/item/IM2_1996_60_6_a0/
[1] Rozhdestvenskii V. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968 | Zbl
[2] Lax P. O., “Hyperbolic systems of conservation laws, II”, Comm. in Pure and Appl. Math., 10 (1957), 537–566 | DOI | MR | Zbl
[3] Temple B., “Systems of conservations laws with invariant submanifolds”, Transactions of the American Mathematical Society, 280:2 (1983), 781–795 | DOI | MR | Zbl
[4] Alekseevskaya T. V., “Study of the system of quasilinear equations for isotachophoresis”, Adv. in Appl. Math., 11:1 (1990), 63–107 | DOI | MR | Zbl
[5] Dubrovin B. A., Geometry of $2D$ topological field theories, Preprint SISSA–89/94/FM, SISSA, Trieste, 1994, {hep-th/9407018} | Zbl
[6] Mokhov O. I., “Symplectic and Poisson geometry on loop spaces of manifolds and nonlinear equations”, Trans. Amer. Math. Soc. Ser. 2, 170 (1995), 121–151 | MR | Zbl
[7] Mokhov O. I., Ferapontov E. V., “Uravneniya assotsiativnosti dvumernoi topologicheskoi teorii polya kak integriruemye gamiltonovy sistemy gidrodinamicheskogo tipa”, Funkts. analiz i ego prilozh., 30:3 (1996), 62–72 | MR | Zbl
[8] Ferapontov E. V., Mokhov O. I., “The equations of associativity as hydrodynamic type systems: Hamiltonian representation and the integrability”, Proc. of the workshop “Nonlinear Physics. Theory and experiment”, World Scientific Singapore, Italy, Lecce, 1995 | MR
[9] Rogers C., Shadwick W. F., Backlund transformations and their Applications, Academic Press, N.Y., 1982 | MR
[10] Rogers C., “Reciprocal transformations and their Applications. Nonlinear Evolutions”, Proc. of the 5th Workshop on Nonlinear Evolution Equations (France), 1987, 109–123 | MR
[11] Ferapontov E. V., “Preobrazovaniya po resheniyu i ikh invarianty”, Differents. uravn., 25:7 (1989), 1256–1265 | MR | Zbl
[12] Ferapontov E. V., “Avtopreobrazovaniya po resheniyu i gidrodinamicheskie simmetrii”, Differents. uravn., 27:7 (1991), 1250–1262 | MR
[13] Ferapontov E. V., “Dupin hypersurfaces and integrable hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants”, Diff. Geometry and its Appl., 5 (1995), 121–152 | DOI | MR | Zbl
[14] Finikov S. P., Teoriya kongruentsii, Gostekhizdat, M.–L., 1950 | MR
[15] Tsarev S. P., “Geometriya gamiltonovykh sistem gidrodinamicheskogo tipa. Obobschennyi metod godografa”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 1048–1068 | Zbl
[16] Ferapontov E. V., “Gamiltonovy sistemy gidrodinamicheskogo tipa i ikh realizatsiya na giperpoverkhnostyakh psevdoevklidova prostranstva”, Problemy geometrii, 22, VINITI, 1990, 59–96 | MR | Zbl
[17] Rozenfeld B. A., Mnogomernye prostranstva, Fizmatlit, M., 1966 | MR
[18] Little J. B., “On Lie's approach to the study of translation manifolds”, J. Diff. Geom., 26:2 (1987), 253–272 | MR | Zbl
[19] Lie S., “Translations - $M_3$ zweiter art im $R_4$”, Gesammelte Abhandlungen, Band VII, Abh. XXIX, Teubner, Leipzig, 1960
[20] Ferapontov E. V., “Preobrazovaniya Laplasa sistem gidrodinamicheskogo tipa v invariantakh Rimana”, Teor. i mat. fiz., 110:1 (1997), 86–97 | MR | Zbl