On the functional equation $f(p(z))=g(q(z))$, where~$p$ and~$q$ are ``generalized'' polynomials and~$f$ and~$g$ are meromorphic functions
Izvestiya. Mathematics , Tome 60 (1996) no. 5, pp. 963-984.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find all the solutions of the equation $f(p(z))=g(q(z))$, where $p$ and $q$ are polynomials and $p$ and $q$ are transcendental meromorphic functions in $\mathbb C$. In fact, a more general algebraic problem is solved.
@article{IM2_1996_60_5_a5,
     author = {S. A. Lysenko},
     title = {On the functional equation $f(p(z))=g(q(z))$, where~$p$ and~$q$ are ``generalized'' polynomials and~$f$ and~$g$ are meromorphic functions},
     journal = {Izvestiya. Mathematics },
     pages = {963--984},
     publisher = {mathdoc},
     volume = {60},
     number = {5},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a5/}
}
TY  - JOUR
AU  - S. A. Lysenko
TI  - On the functional equation $f(p(z))=g(q(z))$, where~$p$ and~$q$ are ``generalized'' polynomials and~$f$ and~$g$ are meromorphic functions
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 963
EP  - 984
VL  - 60
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a5/
LA  - en
ID  - IM2_1996_60_5_a5
ER  - 
%0 Journal Article
%A S. A. Lysenko
%T On the functional equation $f(p(z))=g(q(z))$, where~$p$ and~$q$ are ``generalized'' polynomials and~$f$ and~$g$ are meromorphic functions
%J Izvestiya. Mathematics 
%D 1996
%P 963-984
%V 60
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a5/
%G en
%F IM2_1996_60_5_a5
S. A. Lysenko. On the functional equation $f(p(z))=g(q(z))$, where~$p$ and~$q$ are ``generalized'' polynomials and~$f$ and~$g$ are meromorphic functions. Izvestiya. Mathematics , Tome 60 (1996) no. 5, pp. 963-984. http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a5/

[1] Flatto L., “A Theorem on Level Curves of Harmonic Functions”, J. London Math. Soc., 1 (1969), 470–472 | DOI | MR | Zbl

[2] Hansen L. J., Shapiro H. S., “Graphs and functional equations”, Ann. Acad. Sci. Fennic. Ser. A. I. Math., 18 (1993), 125–146 | MR | Zbl

[3] Lysenko S. A., “O funktsionalnom uravnenii $f(p(z))=g(q(z))$, gde $f$ i $g$ – meromorfnye funktsii, a $p$ i $q$ – polinomy”, Mat. fizika, analiz, geometriya, 2:1 (1995), 68–86 | MR | Zbl

[4] Gross F., “Factorization of meromorphic functions and some open problems”, Lect. Notes in Math., 599 (1977), 51–67 | DOI | MR | Zbl

[5] Pyatetskii-Shapiro I. I., Shafarevich I. R., “Teoriya Galua transtsendentnykh rasshirenii i uniformizatsiya”, Izv. AN SSSR. Ser. matem., 30:3 (1966), 671–704 | MR

[6] Leng S., Algebra, Mir, M., 1968

[7] Grauert H., “On meromorphic equivalence relations”, Contributions to Several Complex Variables, Aspects of Math., E9, 1986, 115–145 | MR

[8] Demazure M., Grothendieck A., Schémas en Groupes, I, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA3), Lect. Notes in Math., 151, Springer-Verlag, 1970 | MR

[9] Elizarov P. H., Il'yashenko Yu. S., Shcherbakov A. A., Voronin S. M., “Finitely generated groups of germs of one-dimensional conformal mappings and invariants for complex singular points of analytic foliations of the complex plane”, Adv. Sov. Math., 14 (1993), 57–105 | MR | Zbl

[10] Ritt J. F., “Prime and composite polynomials”, Trans. Amer. Math. Soc., 1922, 51–66 | DOI | MR | Zbl

[11] Fuchs W. H. J., Gross F., “Generalization of a theorem of A. and C. Rényi on periodic functions”, Acta. Sci. Math., 1971 | MR

[12] Shapiro H. S., “The functional equation $f(p(z))=g(q(z))$ and a problem of A. and C. Rényi”, Studia Sci. Math. Hungar., 1 (1966), 255–259 | MR | Zbl

[13] Il'yashenko Yu. S., “Nonlinear Stokes Phenomena”, Adv. Sov. Math., 14 (1993), 1–55 | MR | Zbl

[14] Scherbakov A. A., “O plotnosti orbity psevdogruppy konformnykh otobrazhenii i obobschenii teoremy Khudai–Verenova”, Vest. MGU. Ser. 1. Matem. i mekh., 1982, no. 4, 10–15 | Zbl