On the functional equation $f(p(z))=g(q(z))$, where~$p$ and~$q$ are ``generalized'' polynomials and~$f$ and~$g$ are meromorphic functions
Izvestiya. Mathematics , Tome 60 (1996) no. 5, pp. 963-984

Voir la notice de l'article provenant de la source Math-Net.Ru

We find all the solutions of the equation $f(p(z))=g(q(z))$, where $p$ and $q$ are polynomials and $p$ and $q$ are transcendental meromorphic functions in $\mathbb C$. In fact, a more general algebraic problem is solved.
@article{IM2_1996_60_5_a5,
     author = {S. A. Lysenko},
     title = {On the functional equation $f(p(z))=g(q(z))$, where~$p$ and~$q$ are ``generalized'' polynomials and~$f$ and~$g$ are meromorphic functions},
     journal = {Izvestiya. Mathematics },
     pages = {963--984},
     publisher = {mathdoc},
     volume = {60},
     number = {5},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a5/}
}
TY  - JOUR
AU  - S. A. Lysenko
TI  - On the functional equation $f(p(z))=g(q(z))$, where~$p$ and~$q$ are ``generalized'' polynomials and~$f$ and~$g$ are meromorphic functions
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 963
EP  - 984
VL  - 60
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a5/
LA  - en
ID  - IM2_1996_60_5_a5
ER  - 
%0 Journal Article
%A S. A. Lysenko
%T On the functional equation $f(p(z))=g(q(z))$, where~$p$ and~$q$ are ``generalized'' polynomials and~$f$ and~$g$ are meromorphic functions
%J Izvestiya. Mathematics 
%D 1996
%P 963-984
%V 60
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a5/
%G en
%F IM2_1996_60_5_a5
S. A. Lysenko. On the functional equation $f(p(z))=g(q(z))$, where~$p$ and~$q$ are ``generalized'' polynomials and~$f$ and~$g$ are meromorphic functions. Izvestiya. Mathematics , Tome 60 (1996) no. 5, pp. 963-984. http://geodesic.mathdoc.fr/item/IM2_1996_60_5_a5/