Infinite Burnside groups of even exponent
Izvestiya. Mathematics , Tome 60 (1996) no. 3, pp. 453-654.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present a modified version of the Novikov–Adian theory for free Burnside groups of exponent $n=16k\geqslant 8000$. On the basis of this theory, we obtain a negative solution to the Burnside problem for even values of $n\geqslant 8000$ and prove a number of assertions on Burnside groups of exponent $n=16k\geqslant 8000$.
@article{IM2_1996_60_3_a0,
     author = {I. G. Lysenok},
     title = {Infinite {Burnside} groups of even exponent},
     journal = {Izvestiya. Mathematics },
     pages = {453--654},
     publisher = {mathdoc},
     volume = {60},
     number = {3},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_3_a0/}
}
TY  - JOUR
AU  - I. G. Lysenok
TI  - Infinite Burnside groups of even exponent
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 453
EP  - 654
VL  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_3_a0/
LA  - en
ID  - IM2_1996_60_3_a0
ER  - 
%0 Journal Article
%A I. G. Lysenok
%T Infinite Burnside groups of even exponent
%J Izvestiya. Mathematics 
%D 1996
%P 453-654
%V 60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_3_a0/
%G en
%F IM2_1996_60_3_a0
I. G. Lysenok. Infinite Burnside groups of even exponent. Izvestiya. Mathematics , Tome 60 (1996) no. 3, pp. 453-654. http://geodesic.mathdoc.fr/item/IM2_1996_60_3_a0/

[1] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl

[2] Adyan S. I., “Issledovaniya po probleme Bernsaida i svyazannym s nei voprosam”, Tr. Matem. in-ta im. V. A. Steklova, 168 (1984), 171–196 | MR

[3] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1977

[4] Lysenok I. G., “Beskonechnost bernsaidovykh grupp perioda $ 2^k $ pri $ k \geqslant 13 $”, UMN, 47:2 (1992), 201–202 | MR | Zbl

[5] Novikov P. S., Adyan S. I., “Beskonechnye periodicheskie gruppy. I–III”, Izv. AN SSSR. Ser. matem., 32 (1968), 212–244 ; 251–524 ; 709–731 | Zbl | MR

[6] Olshanskii A. Yu., “O teoreme Novikova–Adyana”, Matem. sb., 118:2 (1982), 203–235 | MR

[7] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR

[8] Sanov I. N., “Reshenie problemy Bernsaida dlya pokazatelya 4”, Uchen. Zapiski Leningr. Univ. Ser. matem., 10 (1940), 166–170 | MR | Zbl

[9] Adian S. I., Lysionok I. G., “The method of classification of periodic words and the Burnside problem”, Contemporary Math. Part 1, 131 (1992), 13–28 | MR | Zbl

[10] Burnside W., “On an unsettled question in the theory of discontinuous groups”, Quart. J. Math., 33 (1902), 230–238 | Zbl

[11] Hall M., “Solution of the Burnside problem for exponent six”, Illinois J. Math., 2 (1958), 764–786 | MR

[12] Ivanov S. V., “On the Burnside problem on periodic groups”, Bull. of Amer. Math. Soc., 27 (1992), 257–260 | DOI | MR | Zbl

[13] Ivanov S. V., “The free Burnside groups of sufficiently large exponents”, Int. J. of Algebra and Computation, 4 (1994), 1–307 | DOI | MR