Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1996_60_3_a0, author = {I. G. Lysenok}, title = {Infinite {Burnside} groups of even exponent}, journal = {Izvestiya. Mathematics }, pages = {453--654}, publisher = {mathdoc}, volume = {60}, number = {3}, year = {1996}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_3_a0/} }
I. G. Lysenok. Infinite Burnside groups of even exponent. Izvestiya. Mathematics , Tome 60 (1996) no. 3, pp. 453-654. http://geodesic.mathdoc.fr/item/IM2_1996_60_3_a0/
[1] Adyan S. I., Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl
[2] Adyan S. I., “Issledovaniya po probleme Bernsaida i svyazannym s nei voprosam”, Tr. Matem. in-ta im. V. A. Steklova, 168 (1984), 171–196 | MR
[3] Lindon R., Shupp P., Kombinatornaya teoriya grupp, Mir, M., 1977
[4] Lysenok I. G., “Beskonechnost bernsaidovykh grupp perioda $ 2^k $ pri $ k \geqslant 13 $”, UMN, 47:2 (1992), 201–202 | MR | Zbl
[5] Novikov P. S., Adyan S. I., “Beskonechnye periodicheskie gruppy. I–III”, Izv. AN SSSR. Ser. matem., 32 (1968), 212–244 ; 251–524 ; 709–731 | Zbl | MR
[6] Olshanskii A. Yu., “O teoreme Novikova–Adyana”, Matem. sb., 118:2 (1982), 203–235 | MR
[7] Olshanskii A. Yu., Geometriya opredelyayuschikh sootnoshenii v gruppakh, Nauka, M., 1989 | MR
[8] Sanov I. N., “Reshenie problemy Bernsaida dlya pokazatelya 4”, Uchen. Zapiski Leningr. Univ. Ser. matem., 10 (1940), 166–170 | MR | Zbl
[9] Adian S. I., Lysionok I. G., “The method of classification of periodic words and the Burnside problem”, Contemporary Math. Part 1, 131 (1992), 13–28 | MR | Zbl
[10] Burnside W., “On an unsettled question in the theory of discontinuous groups”, Quart. J. Math., 33 (1902), 230–238 | Zbl
[11] Hall M., “Solution of the Burnside problem for exponent six”, Illinois J. Math., 2 (1958), 764–786 | MR
[12] Ivanov S. V., “On the Burnside problem on periodic groups”, Bull. of Amer. Math. Soc., 27 (1992), 257–260 | DOI | MR | Zbl
[13] Ivanov S. V., “The free Burnside groups of sufficiently large exponents”, Int. J. of Algebra and Computation, 4 (1994), 1–307 | DOI | MR