On the contact linearization of Monge--Ampere equations
Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 425-451

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the solution of a number of problems related to the contact classification of Monge–Ampere equations with two independent variables. In the 1870s Sophus Lie formulated the problem of finding whether a local reduction of a given Monge–Ampere equation to some simpler second-order equation (to a semilinear, linear with respect to the derivatives, equation with constant coefficients) is possible. In this paper conditions are studied that yield a realization of such a reduction. As objects that occur in the formulation of these conditions, we use the characteristic bundles of the given Monge–Ampere equation and their derivatives.
@article{IM2_1996_60_2_a7,
     author = {D. V. Tunitsky},
     title = {On the contact linearization of {Monge--Ampere} equations},
     journal = {Izvestiya. Mathematics },
     pages = {425--451},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a7/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - On the contact linearization of Monge--Ampere equations
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 425
EP  - 451
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a7/
LA  - en
ID  - IM2_1996_60_2_a7
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T On the contact linearization of Monge--Ampere equations
%J Izvestiya. Mathematics 
%D 1996
%P 425-451
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a7/
%G en
%F IM2_1996_60_2_a7
D. V. Tunitsky. On the contact linearization of Monge--Ampere equations. Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 425-451. http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a7/