Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1996_60_2_a7, author = {D. V. Tunitsky}, title = {On the contact linearization of {Monge--Ampere} equations}, journal = {Izvestiya. Mathematics }, pages = {425--451}, publisher = {mathdoc}, volume = {60}, number = {2}, year = {1996}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a7/} }
D. V. Tunitsky. On the contact linearization of Monge--Ampere equations. Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 425-451. http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a7/
[1] Lychagin V. V., “Kontaktnaya geometriya i nelineinye differentsialnye uravneniya vtorogo poryadka”, UMN, 34:1(205) (1979), 137–165 | MR | Zbl
[2] Tunitskii D. V., “Zadacha Koshi dlya giperbolicheskikh uravnenii Monzha–Ampera”, Izv. RAN. Ser. matem., 57:4 (1993), 174–191
[3] Morimoto T., “La géométrie des équations Monge–Ampère”, C. R. Acad. Sc. Paris. Série A, 289 (1979), 25–28 | MR | Zbl
[4] Lie S., Gesammelte Abhandlungen, Bd. 3, H. Aschehoug Co, Oslo; B. G. Teubner, Leipzig, 1922 | Zbl
[5] Goursat E., Leçons sur l'intégration des équations aux dérivées partielles du second ordre, V. 1, Hermann, Paris, 1896 | Zbl
[6] Lychagin V. V., Rubtsov V. N., “O teoremakh Sofusa Li dlya uravnenii Monzha–Ampera”, DAN BSSR, 27:5 (1983), 396–398 | MR | Zbl
[7] Lychagin V. V., Rubtsov V. N., Chekalov I. V., “A classification of Monge–Ampère equations”, Ann. scient. Éc. Norm. Sup. 4 série, 26 (1993), 281–308 | MR | Zbl
[8] Rashevskii P. K., Geometricheskaya teoriya uravnenii s chastnymi proizvodnymi, Gostekhizdat, M.–L., 1947
[9] Uorner F., Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987 | MR
[10] Khart N., Geometricheskoe kvantovanie v deistvii, Mir, M., 1985 | MR