Cycles on Abelian varieties and exceptional numbers
Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 391-424
Voir la notice de l'article provenant de la source Math-Net.Ru
The article considers a technique for proving the Hodge, Tate, and Mumford–Tate conjectures for a simple complex Abelian variety $J$ of non-exceptional dimension under the condition that $\operatorname{End}(J)\otimes \mathbb R\in\bigl\{\mathbb R,M_2(\mathbb R),
\mathbb K,\mathbb C\bigr\}$, where $\mathbb K$ is the skew field of classical quaternions. The simple $2p$-dimensional Abelian varieties over a number field ($p$ is a prime, $p\geqslant 17$) are studied in detail. An application is given of Minkowski's theorem on unramified extensions of the field $\mathbb Q$ to the arithmetic and geometry of certain Abelian varieties over the field of rational numbers.
@article{IM2_1996_60_2_a6,
author = {S. G. Tankeev},
title = {Cycles on {Abelian} varieties and exceptional numbers},
journal = {Izvestiya. Mathematics },
pages = {391--424},
publisher = {mathdoc},
volume = {60},
number = {2},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a6/}
}
S. G. Tankeev. Cycles on Abelian varieties and exceptional numbers. Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 391-424. http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a6/