Cycles on Abelian varieties and exceptional numbers
Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 391-424.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers a technique for proving the Hodge, Tate, and Mumford–Tate conjectures for a simple complex Abelian variety $J$ of non-exceptional dimension under the condition that $\operatorname{End}(J)\otimes \mathbb R\in\bigl\{\mathbb R,M_2(\mathbb R), \mathbb K,\mathbb C\bigr\}$, where $\mathbb K$ is the skew field of classical quaternions. The simple $2p$-dimensional Abelian varieties over a number field ($p$ is a prime, $p\geqslant 17$) are studied in detail. An application is given of Minkowski's theorem on unramified extensions of the field $\mathbb Q$ to the arithmetic and geometry of certain Abelian varieties over the field of rational numbers.
@article{IM2_1996_60_2_a6,
     author = {S. G. Tankeev},
     title = {Cycles on {Abelian} varieties and exceptional numbers},
     journal = {Izvestiya. Mathematics },
     pages = {391--424},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a6/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - Cycles on Abelian varieties and exceptional numbers
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 391
EP  - 424
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a6/
LA  - en
ID  - IM2_1996_60_2_a6
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T Cycles on Abelian varieties and exceptional numbers
%J Izvestiya. Mathematics 
%D 1996
%P 391-424
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a6/
%G en
%F IM2_1996_60_2_a6
S. G. Tankeev. Cycles on Abelian varieties and exceptional numbers. Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 391-424. http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a6/

[1] Burbaki N., Gruppy i algebry Li, gl. 1–3, Mir, M., 1976 ; гл. 4–6, 1972 ; гл. 7–8, 1978 ; гл. 9, 1986 | MR | Zbl | MR

[2] Borovoi M. V., “Skhemy Shimury–Delinya $M_{\mathbb C}(G,h)$ i ratsionalnye klassy kogomologii tipa $(p,p)$ abelevykh mnogoobrazii”, Voprosy teorii grupp i gomologicheskoi algebry, Izd-vo YarGU, Yaroslavl, 1977, 3–53 | MR

[3] Borovoi M. V., “Gruppa Khodzha i algebra endomorfizmov abeleva mnogoobraziya”, Voprosy teorii grupp i gomologicheskoi algebry, Izd-vo YarGU, Yaroslavl, 1981, 124–126 | MR

[4] Chi W., “On the $l$-adic representations attached to some absolutely simple abelian varieties of type II”, J. Fac. Sci. Univ. Tokyo. Sect. 1A. Math., 37 (1990), 467–484 | MR | Zbl

[5] Chi W., “On the $l$-adic representations attached to simple abelian varieties of type IV”, Bull. Austral. Math. Soc., 44 (1991), 71–78 | DOI | MR | Zbl

[6] Chi W., “$l$-adic and $\lambda $-adic representations associated to abelian varieties defined over number fields”, Amer. J. Math., 114 (1992), 315–353 | DOI | MR | Zbl

[7] Delin P., “Teoriya Khodzha, II”, Matematika, 17:5 (1973), 3–56 | MR

[8] Faltings G., “Endlichkeitssätze für abelsche Varietäten über Zahlkörpern”, Invent. Math., 73 (1983), 349–366 | DOI | MR | Zbl

[9] Grothendieck A., “Hodge's general conjecture is false for trivial reasons”, Topology, 8 (1969), 299–303 | DOI | MR | Zbl

[10] Hazama F., “Branching rules and Hodge cycles on certain abelian varieties”, Amer. J. Math., 110 (1988), 235–252 | DOI | MR | Zbl

[11] Hazama F., “The generalized Hodge conjecture for stably nondegenerate abelian varieties”, Compos. Math., 93 (1994), 129–137 | MR | Zbl

[12] Zarkhin Yu. G., “Abelevy mnogoobraziya, $l$-adicheskie predstavleniya i $End{SL}_2$”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 294–308 | MR | Zbl

[13] Zarkhin Yu. G., “Vesa prostykh algebr Li v kogomologiyakh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 264–304 | MR | Zbl

[14] Zarhin Yu. G., “Abelian varieties having a reduction of K3 type”, Duke Math. J., 65:3 (1992), 511–527 | DOI | MR | Zbl

[15] Kleiman S. L., “Algebraic cycles and the Weil conjectures”, Dix exposes sur la cohomologie des schemas, North-Holland, Amsterdam, 1968, 359–386 | MR

[16] Mumford D., “Families of abelian varieties. Algebraic groups and discontinuous subgroups”, Proc. Symp. in Pure Math., 9 (1966), 347–352 | MR

[17] Mumford D., “A note on paper: Shimura, Discontinuous groups and abelian varieties”, Math. Ann., 181 (1969), 345–351 | DOI | MR | Zbl

[18] Mamford D., Abelevy mnogoobraziya, Mir, M., 1971

[19] Pyatetskii-Shapiro I. I., “Vzaimootnosheniya mezhdu gipotezami Teita i Khodzha dlya abelevykh mnogoobrazii”, Matem. sb., 85(127):4(8) (1971), 610–620 | MR

[20] Sen S., “Lie algebras of Galois groups arising from Hodge–Tate modules”, Ann. Math., 97 (1973), 160–170 | DOI | MR | Zbl

[21] Serre J.-P., “Sur les groupes de Galois attachés aux groupes $p$-divisibles”, Proceedings of a conference on local filelds, Springer-Verlag, Berlin–Heidelberg–New York, 1967, 118–131 | MR

[22] Serre J.-P., “Groupes algébriques associés aux modules de Hodge–Tate”, Astérisque, 65 (1979), 155–188 | MR

[23] Serre J.-P., Tate J., “Good reduction of abelian varieties and applications”, Ann. Math., 88:3 (1968), 492–517 | DOI | MR | Zbl

[24] Shimura G., “On analytic families of polarized abelian varieties and automorphic functions”, Ann. Math., 78 (1963), 149–192 | DOI | MR | Zbl

[25] Tate J., “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry, New York, 1965, 93–110 | MR

[26] Tate J., “Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda)”, Séminaire Bourbaki 1968/69, Exposé 352, Lecture Notes in Math., 179, 1971, 95–110

[27] Tankeev S. G., “Ob algebaricheskikh tsiklakh na abelevykh mnogoobraziyakh, II”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 418–429 | MR | Zbl

[28] Tankeev S. G., “Ob algebraicheskikh tsiklakh na poverkhnostyakh i abelevykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 45:2 (1981), 398–434 | MR | Zbl

[29] Tankeev S. G., “Tsikly na prostykh abelevykh mnogoobraziyakh prostoi razmernosti”, Izv. AN SSSR. Ser. matem., 46:1 (1982), 155–170 | MR

[30] Tankeev S. G., Ob algebraicheskikh tsiklakh na poverkhnostyakh i abelevykh mnogoobraziyakh, Dis. ...dokt. fiz.-matem. nauk, MGU, M., 1985

[31] Tankeev S. G., “Tsikly na prostykh abelevykh mnogoobraziyakh prostoi razmernosti nad chislovymi polyami”, Izv. AN SSSR. Ser. matem., 51:6 (1987), 1214–1227 | MR

[32] Tankeev S. G., “Abelevy mnogoobraziya i obschaya gipoteza Khodzha”, Izv. RAN. Ser. matem., 57:4 (1993), 192–205

[33] Tankeev S. G., “Algebraicheskie tsikly na abelevom mnogoobrazii bez kompleksnogo umnozheniya”, Izv. RAN. Ser. matem., 58:3 (1994), 103–126 | MR | Zbl