Cycles on Abelian varieties and exceptional numbers
Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 391-424

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers a technique for proving the Hodge, Tate, and Mumford–Tate conjectures for a simple complex Abelian variety $J$ of non-exceptional dimension under the condition that $\operatorname{End}(J)\otimes \mathbb R\in\bigl\{\mathbb R,M_2(\mathbb R), \mathbb K,\mathbb C\bigr\}$, where $\mathbb K$ is the skew field of classical quaternions. The simple $2p$-dimensional Abelian varieties over a number field ($p$ is a prime, $p\geqslant 17$) are studied in detail. An application is given of Minkowski's theorem on unramified extensions of the field $\mathbb Q$ to the arithmetic and geometry of certain Abelian varieties over the field of rational numbers.
@article{IM2_1996_60_2_a6,
     author = {S. G. Tankeev},
     title = {Cycles on {Abelian} varieties and exceptional numbers},
     journal = {Izvestiya. Mathematics },
     pages = {391--424},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a6/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - Cycles on Abelian varieties and exceptional numbers
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 391
EP  - 424
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a6/
LA  - en
ID  - IM2_1996_60_2_a6
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T Cycles on Abelian varieties and exceptional numbers
%J Izvestiya. Mathematics 
%D 1996
%P 391-424
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a6/
%G en
%F IM2_1996_60_2_a6
S. G. Tankeev. Cycles on Abelian varieties and exceptional numbers. Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 391-424. http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a6/