Hodge groups of abelian varieties with purely multiplicative reduction
Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 379-389

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper is that if $A$ is an abelian variety over a subfield $F$ of $\mathbf C$, and $A$ has purely multiplicative reduction at a discrete valuation of $F$, then the Hodge group of $A$ is semisimple. Further, we give necessary and sufficient conditions for the Hodge group to be semisimple. We obtain bounds on certain torsion subgroups for abelian varieties which do not have purely multiplicative reduction at a given discrete valuation, and therefore obtain bounds on torsion for abelian varieties, defined over number fields, whose Hodge groups are not semisimple. Bibliography: 26 titles.
@article{IM2_1996_60_2_a5,
     author = {A. Silverberg and Yu. G. Zarhin},
     title = {Hodge groups of abelian varieties with purely multiplicative reduction},
     journal = {Izvestiya. Mathematics },
     pages = {379--389},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a5/}
}
TY  - JOUR
AU  - A. Silverberg
AU  - Yu. G. Zarhin
TI  - Hodge groups of abelian varieties with purely multiplicative reduction
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 379
EP  - 389
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a5/
LA  - en
ID  - IM2_1996_60_2_a5
ER  - 
%0 Journal Article
%A A. Silverberg
%A Yu. G. Zarhin
%T Hodge groups of abelian varieties with purely multiplicative reduction
%J Izvestiya. Mathematics 
%D 1996
%P 379-389
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a5/
%G en
%F IM2_1996_60_2_a5
A. Silverberg; Yu. G. Zarhin. Hodge groups of abelian varieties with purely multiplicative reduction. Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 379-389. http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a5/