On measure-valued solutions of the Cauchy problem for a~first-order quasilinear equation
Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 335-377

Voir la notice de l'article provenant de la source Math-Net.Ru

Measure-valued solutions of the Cauchy problem are considered for a first-order quasilinear equation with only continuous flow functions. A measure-valued analogue of the maximum principle (in Lebesgue spaces) is proved. Conditions are found under which a measure-valued solution is an ordinary function. Uniqueness questions are studied. The class of “strong” measure-valued solutions is distinguished and the existence and uniqueness (under natural restrictions) of a strong measure-valued solution is proved. Questions of the convergence of sequences of measure-valued solutions are studied.
@article{IM2_1996_60_2_a4,
     author = {E. Yu. Panov},
     title = {On measure-valued solutions of the {Cauchy} problem for a~first-order quasilinear equation},
     journal = {Izvestiya. Mathematics },
     pages = {335--377},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a4/}
}
TY  - JOUR
AU  - E. Yu. Panov
TI  - On measure-valued solutions of the Cauchy problem for a~first-order quasilinear equation
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 335
EP  - 377
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a4/
LA  - en
ID  - IM2_1996_60_2_a4
ER  - 
%0 Journal Article
%A E. Yu. Panov
%T On measure-valued solutions of the Cauchy problem for a~first-order quasilinear equation
%J Izvestiya. Mathematics 
%D 1996
%P 335-377
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a4/
%G en
%F IM2_1996_60_2_a4
E. Yu. Panov. On measure-valued solutions of the Cauchy problem for a~first-order quasilinear equation. Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 335-377. http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a4/