Convolution equations containing singular probability distributions
Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 251-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to equations of the form \begin{equation} \varphi(x)=g(x)-\int_0^\infty\varphi(t)\,dT(x-t), \tag{1} \end{equation} where $T$ is a continuous function of bounded variation on $(-\infty;\infty)$ containing a singular component. First we study asymptotic and other properties of the solutions of formal Volterra equations (1) corresponding to $T(x)=0$ for $x\leqslant 0$. Next we introduce and study non-linear factorization equations (NFE) for (1). Factorization is constructed in the case when $T(-\infty)=0$, $T(x)\uparrow$ in $x$, and $T(+\infty)=\mu\leqslant 1$. With the aid of this factorization, we prove existence theorems for homogeneous $(g=0)$ and non-homogeneous equations in the singular case $\mu=1$.
@article{IM2_1996_60_2_a1,
     author = {N. B. Engibaryan},
     title = {Convolution equations containing singular probability distributions},
     journal = {Izvestiya. Mathematics },
     pages = {251--279},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a1/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - Convolution equations containing singular probability distributions
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 251
EP  - 279
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a1/
LA  - en
ID  - IM2_1996_60_2_a1
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T Convolution equations containing singular probability distributions
%J Izvestiya. Mathematics 
%D 1996
%P 251-279
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a1/
%G en
%F IM2_1996_60_2_a1
N. B. Engibaryan. Convolution equations containing singular probability distributions. Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 251-279. http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a1/

[1] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[2] Lindlay D. V., “The theory of queue with a single server”, Proc. Cambridge Phil. Soc., 1952, no. 48, 277–289 | DOI | MR

[3] Krein M. G., “Integralnye uravneniya na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, UMN, 13:5 (1958), 3–120 | MR | Zbl

[4] Spitzer F., “The Wiener–Hopf Equation, whose kernel is a probability density”, Duke Math. J., 24:3 (1957), 323–343 | DOI | MR

[5] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR | Zbl

[6] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR

[7] Engibaryan N. B., Arutyunyan A. A., “Integralnye uravneniya na polupryamoi s raznostnymi yadrami i nelineinye funktsionalnye uravneniya”, Matem. sb., 97:1 (1975), 35–58 | MR | Zbl

[8] Gakhov F. D., Cherskii Yu. I., Uravneniya tipa svertki, Nauka, M., 1978 | MR | Zbl

[9] Vladimirov V. S., “Uravnenie Vinera–Khopfa v algebrakh Nevanlinny i Smirnova”, Izv. AN SSSR. Ser. matem., 51:4 (1987), 767–784 | MR

[10] Engibaryan N. B., Arabadzhyan L. G., “Uravneniya v svertkakh i nelineinye funktsionalnye uravneniya”, Itogi nauki i tekhniki. Mat. analiz, 22, VINITI AN SSSR, M., 1984, 175–240 | MR

[11] Spittser F., Printsipy sluchainogo bluzhdaniya, Mir, M., 1969

[12] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1967

[13] Engibaryan N. B., “O nelineinykh uravneniyakh faktorizatsii operatorov”, Primenenie metodov teorii funktsii i funkts. analiza k zadacham mat. fiziki, Izd-vo AN ArmSSR, Erevan, 1982, 123–128

[14] Sobolev V. V., Kurs teoreticheskoi astrofiziki, Nauka, M., 1967