Convolution equations containing singular probability distributions
Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 251-279
Voir la notice de l'article provenant de la source Math-Net.Ru
The article is devoted to equations of the form
\begin{equation}
\varphi(x)=g(x)-\int_0^\infty\varphi(t)\,dT(x-t),
\tag{1}
\end{equation}
where $T$ is a continuous function of bounded variation on $(-\infty;\infty)$ containing a singular component. First we study asymptotic and other properties of the solutions of formal Volterra equations (1) corresponding to $T(x)=0$ for $x\leqslant 0$. Next we introduce and study non-linear factorization equations (NFE) for (1). Factorization is constructed in the case when $T(-\infty)=0$, $T(x)\uparrow$ in $x$, and $T(+\infty)=\mu\leqslant 1$. With the aid of this factorization, we prove existence theorems for homogeneous $(g=0)$ and non-homogeneous equations in the singular case $\mu=1$.
@article{IM2_1996_60_2_a1,
author = {N. B. Engibaryan},
title = {Convolution equations containing singular probability distributions},
journal = {Izvestiya. Mathematics },
pages = {251--279},
publisher = {mathdoc},
volume = {60},
number = {2},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a1/}
}
N. B. Engibaryan. Convolution equations containing singular probability distributions. Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 251-279. http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a1/