Convolution equations containing singular probability distributions
Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 251-279

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to equations of the form \begin{equation} \varphi(x)=g(x)-\int_0^\infty\varphi(t)\,dT(x-t), \tag{1} \end{equation} where $T$ is a continuous function of bounded variation on $(-\infty;\infty)$ containing a singular component. First we study asymptotic and other properties of the solutions of formal Volterra equations (1) corresponding to $T(x)=0$ for $x\leqslant 0$. Next we introduce and study non-linear factorization equations (NFE) for (1). Factorization is constructed in the case when $T(-\infty)=0$, $T(x)\uparrow$ in $x$, and $T(+\infty)=\mu\leqslant 1$. With the aid of this factorization, we prove existence theorems for homogeneous $(g=0)$ and non-homogeneous equations in the singular case $\mu=1$.
@article{IM2_1996_60_2_a1,
     author = {N. B. Engibaryan},
     title = {Convolution equations containing singular probability distributions},
     journal = {Izvestiya. Mathematics },
     pages = {251--279},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a1/}
}
TY  - JOUR
AU  - N. B. Engibaryan
TI  - Convolution equations containing singular probability distributions
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 251
EP  - 279
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a1/
LA  - en
ID  - IM2_1996_60_2_a1
ER  - 
%0 Journal Article
%A N. B. Engibaryan
%T Convolution equations containing singular probability distributions
%J Izvestiya. Mathematics 
%D 1996
%P 251-279
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a1/
%G en
%F IM2_1996_60_2_a1
N. B. Engibaryan. Convolution equations containing singular probability distributions. Izvestiya. Mathematics , Tome 60 (1996) no. 2, pp. 251-279. http://geodesic.mathdoc.fr/item/IM2_1996_60_2_a1/