Two-dimensional variational problems of the theory of plasticity
Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 179-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present work gives explicit criteria for the local continuity of the stress tensor, which is a minimizer of a two-dimensional variational problem (the Haar–Karman principle). The local continuity of the deformation tensor is derived from the dual relations that reflect the fact that the displacement vector and the stress tensor are the saddle point of a particular Lagrangian.
@article{IM2_1996_60_1_a7,
     author = {G. A. Seregin},
     title = {Two-dimensional variational problems of the theory of plasticity},
     journal = {Izvestiya. Mathematics },
     pages = {179--216},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a7/}
}
TY  - JOUR
AU  - G. A. Seregin
TI  - Two-dimensional variational problems of the theory of plasticity
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 179
EP  - 216
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a7/
LA  - en
ID  - IM2_1996_60_1_a7
ER  - 
%0 Journal Article
%A G. A. Seregin
%T Two-dimensional variational problems of the theory of plasticity
%J Izvestiya. Mathematics 
%D 1996
%P 179-216
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a7/
%G en
%F IM2_1996_60_1_a7
G. A. Seregin. Two-dimensional variational problems of the theory of plasticity. Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 179-216. http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a7/

[1] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1979

[2] Klyushnikov V. D., Matematicheskaya teoriya plastichnosti, Izd-vo Mosk. un-ta, M., 1979 | MR

[3] Mosolov P. P., Myasnikov V. P., “O korrektnosti kraevykh zadach v mekhanike sploshnykh sred”, Matem. sb., 88(130):2(6) (1972), 256–267 | MR | Zbl

[4] Mosolov P. P., Myasnikov V. P., Mekhanika zhestkoplasticheskikh sred, Nauka, M., 1981 | MR | Zbl

[5] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1983

[6] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Nauka, M., 1979 | MR

[7] Temam R., Strang G., “Duality and relaxations in the variational problems in plasticity”, J. Mécanique, 19 (1980), 1–35 | MR

[8] Anzellotti G., Giaquinta M., “On the existence of the fields of stresses and displacements for an elasti-perfectly plastic body in static equilibrium”, J. Math. Pures Appl., 61 (1982), 219–244 | MR | Zbl

[9] Kohn R., Temam R., “Dual spaces of stresses and strains with applications to Hencky plasticity”, Appl. Math. Optim., 10 (1983), 1–35 | DOI | MR | Zbl

[10] Hardt R., Kinderlehrer D., “Elastic-plastic deformation”, Appl. Math. Optim., 10 (1983), 203–246 | DOI | MR | Zbl

[11] Serëgin G. A., “Variatsionno-raznostnye skhemy dlya zadach mekhaniki idealno-uprugoplasticheskikh sred”, Zhurn. vychisl. matematiki i mat. fiziki, 25:2 (1985), 237–253 | MR

[12] Mathies H., Strang G., Christiansen E., “The saddle point of a differential program”, Energy Methods in Finite Element Analysis, volume dedicated to Pröfessor Fraejs de Veubeke, eds. R. Glowinski, E. Rodin, O. C. Zienkiewicz, Wiley, New York, 1979 | MR

[13] Suquet P., “Existence et régularite des solutions des equations de la plasticité parfaite”, Thése de 3e Cycle, Université de Paris-VI, 1978

[14] Temam R., Strang G., “Functions of bounded deformation”, Arch. Rational Mech. Anal., 75 (1980/1981), 7–21 | DOI | MR | Zbl

[15] Temam R., Probléms mathématiques en plasticité, Gauthier-Villars, Paris, 1965 | MR

[16] Serëgin G. A., “Differentsialnye svoistva reshenii variatsionnykh zadach dlya funktsionalov lineinogo rosta”, Problemy matem. analiza, no. 11, Izd-vo LGU, L., 1990, 51–79 | MR

[17] Serëgin G. A., “O regulyarnosti minimaizerov nekotorykh variatsionnykh zadach teorii plastichnosti”, Algebra i Analiz, 4:5 (1992), 181–218

[18] Brezis H., Stampacchia G., “Sur la régularité de la solution d'inequations elliptiques”, Bull. Soc. Math. France, 96 (1968), 153–180 | MR | Zbl

[19] Caffarelli L. A., Riviere N. M., “On the Lipschitz character of the stress tensor when twisting an elastic-plastic bar”, Arch. Rational Mech. Anal., 69 (1979), 31–36 | DOI | MR | Zbl

[20] Friedman A., Variational Principles and free-boundary problems, Wiley-Interscience, New York, 1982 | MR

[21] Serëgin G. A., “O differentsiruemosti ekstremalei variatsionnykh zadach mekhaniki idealno-uprugoplasticheskikh sred”, Diff. uravn., 23:11 (1987), 1981–1991 | MR

[22] Serëgin G. A., “O regulyarnosti slabykh reshenii variatsionnykh zadach teorii plastichnosti”, Algebra i Analiz, 2:2 (1990), 121–140

[23] Evans L. C., Knerr B., “Elastic-plastic plane stress problem”, Appl. Math. Optim., 5 (1979), 331–348 | DOI | MR | Zbl

[24] Serëgin G. A., “O differentsialnykh svoistvakh ekstremalei variatsionnykh zadach, voznikayuschikh v teorii plastichnosti”, Diff. uravn., 26:6 (1990), 1033–1044 | MR

[25] Giaquinta M., “Multiple integrals in the calculus of variations and nonlinear elliptic systems”, Ann. Math. Studies, no. 105, Princeton Univ. Press, Princeton–N. Y., 1983 | MR | Zbl

[26] Widman K. O., “Hölder continuity of solutions of elliptic systems”, Manuscripta Math., 5 (1971), 299–308 | DOI | MR | Zbl

[27] Frehse J., “Two-dimensional variational problems with thin obstacles”, Math. Z., 143 (1975), 279–288 | DOI | MR | Zbl

[28] Serëgin G. A., “Lokalnaya otsenka tipa neravenstva Kachchoppoli dlya ekstremalei variatsionnykh zadach plastichnosti Genki”, Nekotorye prilozheniya funktsionalnogo analiza k zadacham matematicheskoi fiziki, Izd-vo In-ta matematiki SO AN SSSR, Novosibirsk, 1988, 127–138

[29] Danford N., Shvarts Dzh. T., Lineinye operatory. T. 1. Obschaya teoriya, IL, M., 1962

[30] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR