Two-dimensional variational problems of the theory of plasticity
Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 179-216

Voir la notice de l'article provenant de la source Math-Net.Ru

The present work gives explicit criteria for the local continuity of the stress tensor, which is a minimizer of a two-dimensional variational problem (the Haar–Karman principle). The local continuity of the deformation tensor is derived from the dual relations that reflect the fact that the displacement vector and the stress tensor are the saddle point of a particular Lagrangian.
@article{IM2_1996_60_1_a7,
     author = {G. A. Seregin},
     title = {Two-dimensional variational problems of the theory of plasticity},
     journal = {Izvestiya. Mathematics },
     pages = {179--216},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a7/}
}
TY  - JOUR
AU  - G. A. Seregin
TI  - Two-dimensional variational problems of the theory of plasticity
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 179
EP  - 216
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a7/
LA  - en
ID  - IM2_1996_60_1_a7
ER  - 
%0 Journal Article
%A G. A. Seregin
%T Two-dimensional variational problems of the theory of plasticity
%J Izvestiya. Mathematics 
%D 1996
%P 179-216
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a7/
%G en
%F IM2_1996_60_1_a7
G. A. Seregin. Two-dimensional variational problems of the theory of plasticity. Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 179-216. http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a7/