$G$-compactness of sequences of non-linear operators of Dirichlet problems with a~variable domain of definition
Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 137-168
Voir la notice de l'article provenant de la source Math-Net.Ru
For a sequence of operators
$A_s\colon\overset{\circ}{W}{}^{1,m}(\Omega_s)\to\bigl(\overset{\circ}{W}{}^{1,m}(\Omega_s)\bigr)^*$
in divergence form we prove a theorem concerning the choice of a subsequence that
$G$-converges to the operator
$\widehat A\colon\overset{\circ}{W}{}^{1,m}(\Omega)\to\bigl(\overset{\circ}{W}{}^{1,m}(\Omega)\bigr)^*$ with the same leading coefficients as the operator $A_s$ and some additional lower coefficient $b(x,u)$. We give a procedure for constructing the function
$b(x,u)$. We discuss the question of whether the principal condition under which the choice theorem is established is necessary. We prove criteria for this condition to hold.
@article{IM2_1996_60_1_a5,
author = {A. A. Kovalevsky},
title = {$G$-compactness of sequences of non-linear operators of {Dirichlet} problems with a~variable domain of definition},
journal = {Izvestiya. Mathematics },
pages = {137--168},
publisher = {mathdoc},
volume = {60},
number = {1},
year = {1996},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a5/}
}
TY - JOUR AU - A. A. Kovalevsky TI - $G$-compactness of sequences of non-linear operators of Dirichlet problems with a~variable domain of definition JO - Izvestiya. Mathematics PY - 1996 SP - 137 EP - 168 VL - 60 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a5/ LA - en ID - IM2_1996_60_1_a5 ER -
A. A. Kovalevsky. $G$-compactness of sequences of non-linear operators of Dirichlet problems with a~variable domain of definition. Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 137-168. http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a5/