$G$-compactness of sequences of non-linear operators of Dirichlet problems with a~variable domain of definition
Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 137-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a sequence of operators $A_s\colon\overset{\circ}{W}{}^{1,m}(\Omega_s)\to\bigl(\overset{\circ}{W}{}^{1,m}(\Omega_s)\bigr)^*$ in divergence form we prove a theorem concerning the choice of a subsequence that $G$-converges to the operator $\widehat A\colon\overset{\circ}{W}{}^{1,m}(\Omega)\to\bigl(\overset{\circ}{W}{}^{1,m}(\Omega)\bigr)^*$ with the same leading coefficients as the operator $A_s$ and some additional lower coefficient $b(x,u)$. We give a procedure for constructing the function $b(x,u)$. We discuss the question of whether the principal condition under which the choice theorem is established is necessary. We prove criteria for this condition to hold.
@article{IM2_1996_60_1_a5,
     author = {A. A. Kovalevsky},
     title = {$G$-compactness of sequences of non-linear operators of {Dirichlet} problems with a~variable domain of definition},
     journal = {Izvestiya. Mathematics },
     pages = {137--168},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a5/}
}
TY  - JOUR
AU  - A. A. Kovalevsky
TI  - $G$-compactness of sequences of non-linear operators of Dirichlet problems with a~variable domain of definition
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 137
EP  - 168
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a5/
LA  - en
ID  - IM2_1996_60_1_a5
ER  - 
%0 Journal Article
%A A. A. Kovalevsky
%T $G$-compactness of sequences of non-linear operators of Dirichlet problems with a~variable domain of definition
%J Izvestiya. Mathematics 
%D 1996
%P 137-168
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a5/
%G en
%F IM2_1996_60_1_a5
A. A. Kovalevsky. $G$-compactness of sequences of non-linear operators of Dirichlet problems with a~variable domain of definition. Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 137-168. http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a5/

[1] Kovalevsky A. A., “On $G$-convergence of operators of Dirichlet problem with varying domain”, Dokl. Akad. Nauk Ukr., 1993, no. 5, 13–17 | MR

[2] Kovalevskii A. A., “O $G$-skhodimosti nelineinykh ellipticheskikh operatorov, svyazannykh s zadachei Dirikhle v peremennykh oblastyakh”, Ukr. matem. zhurn., 45:7 (1993), 948–962 | MR | Zbl

[3] Khruslov E. Ya., “Pervaya kraevaya zadacha v oblastyakh so slozhnoi granitsei dlya uravnenii vysshikh poryadkov”, Matem. sb., 103:4 (1977), 614–629 | MR | Zbl

[4] Skrypnik I. V., “Kvazilineinaya zadacha Dirikhle dlya oblastei s melkozernistoi granitsei”, DAN USSR. Ser. A, 1982, no. 2, 21–25 | MR | Zbl

[5] Skrypnik I. V., Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990 | MR

[6] Pankratov L. S., Ob asimptoticheskom povedenii reshenii variatsionnykh zadach v oblastyakh so slozhnoi granitsei, Preprint No 242 11-87, FTINT AN USSR, Kharkov, 1987

[7] Dal Maso G., Garroni A., A new approach to the study of limits of Dirichlet problems in perforated domains, Preprint No 242 67/M, SISSA, Trieste, 1993 | Zbl

[8] Dal Maso G., Murat F., Asymptotic behaviour and correctors for Dirichlet problems in perforated domains with homogeneous monotone operators, Preprint, SISSA, Trieste, 1993 | Zbl

[9] Zhikov V. V., “O perekhode k predelu v nelineinykh variatsionnykh zadachakh”, Matem. sb., 183:8 (1992), 47–84 | MR

[10] Kovalevsky A. A., On $G$-compactness of a sequence of nonlinear operators of Dirichlet problems in variable domains, Preprint No 242 93.09, IAMM, Donetsk, 1993 | MR

[11] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[12] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, 4-e izd., pererab., Nauka, M., 1976 | MR