Second-order conditions in extremal problems with finite-dimensional range. 2-normal maps
Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 39-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

A minimization problem with constraints that includes problems for which the constraints are of equality and inequality type is considered. First- and second-order necessary conditions in the Lagrangian form are obtained for this problem. The main difference between these conditions and most of the previously known ones is the fact that they also remain meaningful for abnormal problems, in both the finite-dimensional and infinite-dimensional cases. The notion of 2-normal map is introduced. It is proved that if the map that defines a constraint is 2-normal, then the necessary conditions obtained turn into second-order sufficient conditions after an arbitrarily small perturbation of the problem by terms of second order of smallness. It is also proved that in the space of smooth maps, the set of 2-normal maps is everywhere dense in the Whitney topology.
@article{IM2_1996_60_1_a1,
     author = {A. V. Arutyunov},
     title = {Second-order conditions in extremal problems with finite-dimensional range. 2-normal maps},
     journal = {Izvestiya. Mathematics },
     pages = {39--65},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a1/}
}
TY  - JOUR
AU  - A. V. Arutyunov
TI  - Second-order conditions in extremal problems with finite-dimensional range. 2-normal maps
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 39
EP  - 65
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a1/
LA  - en
ID  - IM2_1996_60_1_a1
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%T Second-order conditions in extremal problems with finite-dimensional range. 2-normal maps
%J Izvestiya. Mathematics 
%D 1996
%P 39-65
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a1/
%G en
%F IM2_1996_60_1_a1
A. V. Arutyunov. Second-order conditions in extremal problems with finite-dimensional range. 2-normal maps. Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 39-65. http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a1/

[1] Bliss G. A., Variatsionnoe ischislenie, IL, M., 1950

[2] Anrion R., Teoriya vtoroi variatsii i ee prilozheniya v optimalnom upravlenii, Nauka, M., 1979 | MR

[3] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl

[4] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1958 | MR

[5] Arutyunov A. V., “Vozmuscheniya ekstremalnykh zadach s ogranicheniyami i neobkhodimye usloviya optimalnosti”, Itogi nauki i tekhniki. Matem. analiz, 27, VINITI, M., 1989, 147–235 | MR

[6] Alekseev V. M., Tikhomirov V. N., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[7] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR

[8] Agrachëv A. A., “Topologiya kvadratichnykh otobrazhenii i gessiany gladkikh otobrazhenii”, Itogi nauki i tekhniki. Algebra. Geometriya. Topologiya, 26, VINITI, M., 1988, 85–124 | MR

[9] Arutyunov A. V., “Neobkhodimye usloviya ekstremuma v anormalnoi zadache s ravenstvennymi ogranicheniyami”, UMN, 45:5 (1990), 181–182 | MR | Zbl

[10] Dines L. L., “On the mapping of n quadratic forms”, Bull. Amer. Math. Soc., 48 (1942), 467–471 | DOI | MR | Zbl

[11] Arutyunov A. V., “K neobkhodimym usloviyam optimalnosti v zadache s fazovymi ogranicheniyami”, DAN SSSR, 280:5 (1985), 1033–1037 | MR | Zbl

[12] Avakov E. R., Agrachëv A. A., Arutyunov A. V., “Mnozhestvo urovnya gladkogo otobrazheniya v okrestnosti osoboi tochki i nuli kvadratichnogo otobrazheniya”, Matem. sbornik, 182:8 (1991), 1091–1104 | MR | Zbl

[13] Arutyunov A. V., Tynyanskii N. T., “K neobkhodimym usloviyam lokalnogo minimuma v teorii optimalnogo upravleniya”, DAN SSSR, 275:2 (1984), 268–272 | MR | Zbl

[14] Agrachëv A. A., “Esche odno uslovie uslovnogo ekstremuma”, UMN, 44:5 (1989), 153–154 | MR | Zbl

[15] Levitin E. S., Milyutin A. A., Osmolovskii N. P., “Usloviya vysshikh poryadkov lokalnogo minimuma v zadachakh s ogranicheniyami”, UMN, 33:6 (1978), 85–148 | MR

[16] Milyutin A. A., “O kvadratichnykh usloviyakh ekstremuma v gladkikh zadachakh s konechnomernym obrazom”, Metody teorii ekstremalnykh zadach v ekonomike, Nauka, M., 1981, 137–177

[17] Avakov E. R., “Usloviya ekstremuma dlya gladkikh ogranichenii tipa ravenstv”, ZhVM i MF, 25:5 (1985), 680–693 | MR | Zbl

[18] Rokafellar R., Vypuklyi analiz, Nauka, M., 1973

[19] Khirsh M., Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl

[20] Arutyunov A. V., “K teorii vyrozhdennykh kvadratichnykh form klassicheskogo variatsionnogo ischisleniya”, Izv. RAN. Seriya matem., 58:6 (1994), 3–50 | MR | Zbl

[21] Kakutani S., Klee V. L., “The finite topology of a linear space”, Arcg. Math., 14:1 (1963), 55–58 | DOI | MR | Zbl