Asymptotic analysis of problems on junctions of domains of different limit dimensions. A~body pierced by a~thin rod
Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 1-37

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the junction problem on the union of two bodies: a thin cylinder $Q_\varepsilon$ and a massive body $\Omega(\varepsilon)$ with an opening into which this cylinder has been inserted. The equations on $Q_\varepsilon$ and $\Omega(\varepsilon)$ contain the operators $\mu\Delta$ and $\Delta$ (where $\mu =\mu (\varepsilon)$ is a large parameter and $\Delta$ is the Laplacian): Dirichlet conditions are imposed on the ends of $Q_\varepsilon$ and Neumann conditions on the remainder of the exterior boundary. We study the asymptotic behaviour of a solution $\{u_Q,u_\Omega\}$ as $\varepsilon\to+0$. The principal asymptotic formulae are as follows: $u_Q\sim w$ on $Q_\varepsilon$ and $u_\Omega\sim v$ on $\Omega(\varepsilon)$, where $v$ is a solution of the Neumann problem in $\Omega$ and the Dirac function is distributed along the interval $\Omega\setminus\Omega(0)$ with density $\gamma$. The functions $w$ and $\gamma$, depending on the axis variable of the cylinder, are found as solutions of a so-called resulting problem, in which a second-order differential equation and an integral equation (principal symbol of the operator $(2\pi)^{-1}\ln|\xi|$) are included. In the resulting problem the large parameter $\lvert\ln\varepsilon\rvert$ remains. Various methods of constructing its asymptotic solutions are discussed. The most interesting turns out to be the case $\mu(\varepsilon)=O(\varepsilon^{-2}\lvert\ln\varepsilon\rvert^{-1})$) (even the principal terms of the functions $w$ and $\gamma$ are not found separately). All the asymptotic formulae are justified; the remainders are estimated in the energy norm.
@article{IM2_1996_60_1_a0,
     author = {I. I. Argatov and S. A. Nazarov},
     title = {Asymptotic analysis of problems on junctions of domains of different limit dimensions. {A~body} pierced by a~thin rod},
     journal = {Izvestiya. Mathematics },
     pages = {1--37},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a0/}
}
TY  - JOUR
AU  - I. I. Argatov
AU  - S. A. Nazarov
TI  - Asymptotic analysis of problems on junctions of domains of different limit dimensions. A~body pierced by a~thin rod
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 1
EP  - 37
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a0/
LA  - en
ID  - IM2_1996_60_1_a0
ER  - 
%0 Journal Article
%A I. I. Argatov
%A S. A. Nazarov
%T Asymptotic analysis of problems on junctions of domains of different limit dimensions. A~body pierced by a~thin rod
%J Izvestiya. Mathematics 
%D 1996
%P 1-37
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a0/
%G en
%F IM2_1996_60_1_a0
I. I. Argatov; S. A. Nazarov. Asymptotic analysis of problems on junctions of domains of different limit dimensions. A~body pierced by a~thin rod. Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 1-37. http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a0/