Asymptotic analysis of problems on junctions of domains of different limit dimensions. A~body pierced by a~thin rod
Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 1-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the junction problem on the union of two bodies: a thin cylinder $Q_\varepsilon$ and a massive body $\Omega(\varepsilon)$ with an opening into which this cylinder has been inserted. The equations on $Q_\varepsilon$ and $\Omega(\varepsilon)$ contain the operators $\mu\Delta$ and $\Delta$ (where $\mu =\mu (\varepsilon)$ is a large parameter and $\Delta$ is the Laplacian): Dirichlet conditions are imposed on the ends of $Q_\varepsilon$ and Neumann conditions on the remainder of the exterior boundary. We study the asymptotic behaviour of a solution $\{u_Q,u_\Omega\}$ as $\varepsilon\to+0$. The principal asymptotic formulae are as follows: $u_Q\sim w$ on $Q_\varepsilon$ and $u_\Omega\sim v$ on $\Omega(\varepsilon)$, where $v$ is a solution of the Neumann problem in $\Omega$ and the Dirac function is distributed along the interval $\Omega\setminus\Omega(0)$ with density $\gamma$. The functions $w$ and $\gamma$, depending on the axis variable of the cylinder, are found as solutions of a so-called resulting problem, in which a second-order differential equation and an integral equation (principal symbol of the operator $(2\pi)^{-1}\ln|\xi|$) are included. In the resulting problem the large parameter $\lvert\ln\varepsilon\rvert$ remains. Various methods of constructing its asymptotic solutions are discussed. The most interesting turns out to be the case $\mu(\varepsilon)=O(\varepsilon^{-2}\lvert\ln\varepsilon\rvert^{-1})$) (even the principal terms of the functions $w$ and $\gamma$ are not found separately). All the asymptotic formulae are justified; the remainders are estimated in the energy norm.
@article{IM2_1996_60_1_a0,
     author = {I. I. Argatov and S. A. Nazarov},
     title = {Asymptotic analysis of problems on junctions of domains of different limit dimensions. {A~body} pierced by a~thin rod},
     journal = {Izvestiya. Mathematics },
     pages = {1--37},
     publisher = {mathdoc},
     volume = {60},
     number = {1},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a0/}
}
TY  - JOUR
AU  - I. I. Argatov
AU  - S. A. Nazarov
TI  - Asymptotic analysis of problems on junctions of domains of different limit dimensions. A~body pierced by a~thin rod
JO  - Izvestiya. Mathematics 
PY  - 1996
SP  - 1
EP  - 37
VL  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a0/
LA  - en
ID  - IM2_1996_60_1_a0
ER  - 
%0 Journal Article
%A I. I. Argatov
%A S. A. Nazarov
%T Asymptotic analysis of problems on junctions of domains of different limit dimensions. A~body pierced by a~thin rod
%J Izvestiya. Mathematics 
%D 1996
%P 1-37
%V 60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a0/
%G en
%F IM2_1996_60_1_a0
I. I. Argatov; S. A. Nazarov. Asymptotic analysis of problems on junctions of domains of different limit dimensions. A~body pierced by a~thin rod. Izvestiya. Mathematics , Tome 60 (1996) no. 1, pp. 1-37. http://geodesic.mathdoc.fr/item/IM2_1996_60_1_a0/

[1] Fedoryuk M. V., “Zadacha Dirikhle dlya operatora Laplasa vo vneshnosti tonkogo tela vrascheniya”, Teoriya kubaturn. formul i prilozheniya funkts. analiza k zadacham matem. fiziki, Tr. seminara S. L. Soboleva, 1, 1980, 113–131 | MR | Zbl

[2] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob asimptotike reshenii zadachi Dirikhle v trekhmernoi oblasti s vyrezannym tonkim telom”, DAN SSSR, 256:1 (1981), 37–39 | MR | Zbl

[3] Fedoryuk M. V., “Asimptotika resheniya zadachi Dirikhle dlya uravneniya Laplasa i Gelmgoltsa vo vneshnosti tonkogo tsilindra”, Izv. AN SSSR. Ser. matem., 46:1 (1981), 167–186 | MR

[4] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Asimptotika reshenii zadachi Dirikhle v oblasti s vyrezannoi tonkoi trubkoi”, Matem. sb., 116:2 (1981), 187–217 | MR | Zbl

[5] Nazarov S. A., “Osrednenie kraevykh zadach v oblasti, soderzhaschei tonkuyu polost s periodicheski izmenyayuschimsya secheniem”, Tr. Moskovskogo matem. ob-va, 53 (1990), 98–129 | MR

[6] Goldenveizer A. L., “Postroenie priblizhenii teorii izgiba plastinki metodom asimptoticheskogo integrirovaniya uravnenii teorii uprugosti”, PMM, 27:6 (1962), 1057–1074

[7] Dzhavadov M. G., “Asimptotika resheniya kraevoi zadachi dlya ellipticheskikh uravnenii vtorogo poryadka v tonkikh oblastyakh”, Differents. uravneniya, 4:10 (1968), 1901–1909 | MR | Zbl

[8] Shoikhet B. A., “Odno energeticheskoe tozhdestvo v fizicheski nelineinoi teorii uprugosti i otsenka pogreshnosti uravnenii teorii plit”, PMM, 40:2 (1976), 317–326 | MR

[9] Nazarov S. A., “Struktura reshenii ellipticheskikh kraevykh zadach v tonkikh oblastyakh”, Vest. LGU, 1982, no. 7, 65–68 | Zbl

[10] Syarle F., Rabe P., Uravneniya Karmana, Mir, M., 1983 | MR

[11] Ciarlet P. G., Plates and junctions in elastic multistructures, MASSON, Paris–New-York, 1990 | MR | Zbl

[12] Nazarov S. A., Plamenevskii A. B., “Asimptotika spektra zadachi Neimana v singulyarno vyrozhdayuscheisya oblasti”, Algebra i analiz, 2:2 (1990), 85–111 | Zbl

[13] Leguillon D., Sanchez-Palencia E., “Approximation of a two dimensional problem of junctions”, Computational Mechanics, 6 (1990), 435–455 | DOI | Zbl

[14] Mampassi B., “Un type jonction bidimensionelle d'une tige et d'un massif élastiques”, C. R. Acad. Sci. Paris. Sér. II, 315 (1992), 261–266 | Zbl

[15] Van-Daik M. D., Metody vozmuschenii v mekhanike zhidkosti, Mir, M., 1967

[16] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[17] Leguillon D., Sanchez-Palencia E., Computation of singular solutions in elliptic problem and elasticity, MASSON, Paris–New-York, 1987 | MR | Zbl

[18] Maz'ja W. G., Nazarow S. A., Plamenewski B. A., Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestorten Gebieten, Bd. 1, Akademie-Verlag, Berlin, 1990; Bd. 2, 1991

[19] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962

[20] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Fizmatgiz, M., 1966 | MR

[21] Nazarov S. A., Romashev Yu. A., “Izmenenie koeffitsienta intensivnosti pri razrushenii peremychki mezhdu dvumya kollinearnymi treschinami”, Izv. AN ArmSSR. Mekhanika, 1982, no. 4, 30–40 | Zbl

[22] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[23] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Moskovskogo matem. ob-va, 16 (1967), 219–292

[24] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[25] Kondratev V. A., “Osobennosti reshenii zadachi Dirikhle dlya ellipticheskikh uravnenii vtorogo poryadka v okrestnosti rebra”, Differents. uravneniya, 13:11 (1977), 2026–2032 | MR | Zbl

[26] Nikishkin V. A., “Osobennosti reshenii zadachi Dirikhle dlya uravneniya vtorogo poryadka v okrestnosti rebra”, Vestn. Moskovskogo un-ta. Ser. matem., mekhanika, 1979, no. 2, 51–62 | MR | Zbl

[27] Maz'ja V. G., Rossmann J., “Über die Asymptotik der Losungen elliptischer Randwertaufgaben in der Umgebung von Kanten”, Math. Nachr., 138 (1988), 27–53 | DOI | MR

[28] Matematicheskaya entsiklopediya, 1, Sovetskaya entsiklopediya, M., 1977

[29] Brychkov Yu. A., Prudnikov A. P., Integralnye preobrazovaniya obobschennykh funktsii, Fizmatgiz, M., 1977

[30] Khermander L., Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR

[31] Nagel Yu., “Ob ekvivalentnykh normirovkakh v funktsionalnykh prostranstvakh $H^\mu $”, Vestn. LGU, 1974, no. 7, 41–47 | MR | Zbl

[32] Sanchez-Hobert J., Sanchez-Palencia E., Vibration and Coupling of Continuous Systems, Springer-Verlag, Berlin–Heidelberg–New-York, 1989 | MR

[33] Verzhbinskii G. M., Mazya V. G., “Asimptoticheskoe povedenie reshenii ellipticheskikh uravnenii vtorogo poryadka vblizi granitsy. 1; 2”, Sib. matem. zhurn., 12:6 (1971), 1217–1249 ; 13:6 (1972), 1239–1271 | MR | Zbl | MR | Zbl

[34] Movchan A. B., Nazarov S. A., “Napryazhenno-deformirovannoe sostoyanie vblizi vershiny trekhmernogo absolyutno zhestkogo pika, vnedrennogo v uprugoe telo”, Prikl. mekhanika, 25:12 (1989), 10–19 | MR | Zbl

[35] Sobolev S. L., Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR

[36] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl

[37] Ilin A. M., “Kraevaya zadacha dlya ellipticheskogo uravneniya vtorogo poryadka v oblasti s uzkoi schelyu. II: Oblast s malym otverstiem”, Matem. sb., 103:2 (1977), 265–284 | MR | Zbl

[38] Movchan A. B., Nazarov S. A., “Asimptotika napryazhenno-deformirovannogo sostoyaniya vblizi prostranstvennogo pikoobraznogo vklyucheniya”, Mekhanika kompozitnykh materialov, 1985, no. 5, 792–800