The Hardy--Littlewood problem for numbers with a~fixed number of prime divisors
Izvestiya. Mathematics , Tome 59 (1995) no. 6, pp. 1283-1309.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the number of representations of a natural number $N$ as the sum of a number with $k$ prime divisors and two squares, where $k$ may depend on $N$. We determine the asymptotic behaviour when $2\leqslant k\leqslant(2-\varepsilon)\ln\ln N$ and $(2+\varepsilon)\ln\ln N\leqslant k\leqslant b\ln\ln N$.
@article{IM2_1995_59_6_a8,
     author = {N. M. Timofeev},
     title = {The {Hardy--Littlewood} problem for numbers with a~fixed number of prime divisors},
     journal = {Izvestiya. Mathematics },
     pages = {1283--1309},
     publisher = {mathdoc},
     volume = {59},
     number = {6},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a8/}
}
TY  - JOUR
AU  - N. M. Timofeev
TI  - The Hardy--Littlewood problem for numbers with a~fixed number of prime divisors
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 1283
EP  - 1309
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a8/
LA  - en
ID  - IM2_1995_59_6_a8
ER  - 
%0 Journal Article
%A N. M. Timofeev
%T The Hardy--Littlewood problem for numbers with a~fixed number of prime divisors
%J Izvestiya. Mathematics 
%D 1995
%P 1283-1309
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a8/
%G en
%F IM2_1995_59_6_a8
N. M. Timofeev. The Hardy--Littlewood problem for numbers with a~fixed number of prime divisors. Izvestiya. Mathematics , Tome 59 (1995) no. 6, pp. 1283-1309. http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a8/

[1] Hardy G. H., Littlewood J. E., “Some problems of partitio numerorum. III: On the expression of a number as a sum of primes”, Acta Math., 44 (1923), 1–70 | DOI | MR

[2] Linnik Yu. V., “Asimptoticheskaya formula v additivnoi probleme Khardi–Littlvuda”, Izv. AN SSSR. Ser. matem., 24:5 (1960), 629–706 | MR | Zbl

[3] Linnik Yu. V., Dispersionnyi metod v binarnykh additivnykh zadachakh, Izd-vo Leningradskogo gos. un-ta, L., 1961 | MR

[4] Khooli K., Primenenie metodov resheta v teorii chisel, Nauka, M., 1987 | MR

[5] Linnik Yu. V., “O nekotorykh additivnykh zadachakh”, Matem. sb., 51:2 (1960), 129–154 | MR | Zbl

[6] Sathe L. G., “On a problem of Hardy on the distribution of integers having a given numbers of prime fuctors”, J. Indian Math. Soc., 17 (1953), 63–141 | MR

[7] Selberg A., “Note on a paper by L. G. Sathe”, J. Indian Math. Soc., 18 (1954), 83–87 | MR | Zbl

[8] Nicolas J.-L., “Sur la distribution des numbers entiers ayant une quantite fixee de facteurs premiers”, Acta Arithm., XLIV (1984), 191–200 | MR

[9] Timofeev N. M., Khripunova M. B., “Raspredelenie chisel s zadannym chislom prostykh delitelei v progressiyakh”, Matem. zametki, 55:2 (1994), 144–156 | MR | Zbl

[10] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971 | MR

[11] Vinogradov A. I., “O chislakh s malymi prostymi delitelyami”, DAN SSSR, 109:4 (1956), 683–686 | MR | Zbl

[12] Elliott P. D. T. A., Probabilistic Number Theory, I, Grundlehren der mathematischen Wissenschaften, 239, Springer-Verlag, N. Y., 1979 | MR | Zbl