Splitting obstruction groups and quadratic extensions of anti-structures
Izvestiya. Mathematics , Tome 59 (1995) no. 6, pp. 1207-1232.

Voir la notice de l'article provenant de la source Math-Net.Ru

A natural generalization is given of the LS groups of obstructions to splitting in the case of one-sided manifolds. These LS groups depend functorially on four anti-structures and maps between them, generating a square of a special form. The connection between the LS groups and the Wall groups of anti-structures involved in the diagram is studied. “Intermediate” LS groups (LS with decorations) are also defined, by analogy with the corresponding Wall groups, and the connection between LS groups with different decorations is studied.
@article{IM2_1995_59_6_a5,
     author = {Yu. V. Muranov},
     title = {Splitting obstruction groups and quadratic extensions of anti-structures},
     journal = {Izvestiya. Mathematics },
     pages = {1207--1232},
     publisher = {mathdoc},
     volume = {59},
     number = {6},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a5/}
}
TY  - JOUR
AU  - Yu. V. Muranov
TI  - Splitting obstruction groups and quadratic extensions of anti-structures
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 1207
EP  - 1232
VL  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a5/
LA  - en
ID  - IM2_1995_59_6_a5
ER  - 
%0 Journal Article
%A Yu. V. Muranov
%T Splitting obstruction groups and quadratic extensions of anti-structures
%J Izvestiya. Mathematics 
%D 1995
%P 1207-1232
%V 59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a5/
%G en
%F IM2_1995_59_6_a5
Yu. V. Muranov. Splitting obstruction groups and quadratic extensions of anti-structures. Izvestiya. Mathematics , Tome 59 (1995) no. 6, pp. 1207-1232. http://geodesic.mathdoc.fr/item/IM2_1995_59_6_a5/

[1] Wall C. T. C., Surgery on Compact Manifolds, Acad. Press, L., 1970 | MR

[2] Ranicki A., Exact sequences in the algebraic theory of surgery, Matem. Notes, 26, Princeton, 1981 | MR | Zbl

[3] Akhmetev P. M., “Rasscheplenie gomotopicheskikh ekvivalentnostei vdol odnostoronnego podmnogoobraziya korazmernosti $1$”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 211–241 | MR | Zbl

[4] Ranicki A., Algebraic $L$-theory and topological manifolds, Cambridge University Press, C., 1992 | MR

[5] Wall C. T. C., “On the classification of Hermitian forms. VI: Group rings”, Ann. of Math., 103 (1976), 1–80 | DOI | MR | Zbl

[6] Ranicki A., $L$-theory of twisted quadratic extensions. Appendix $4$, Preprint, Princeton, 1981 | MR | Zbl

[7] Kharshiladze A. F., “Ermitova $K$-teoriya i kvadratichnye rasshireniya kolets”, Tr. MMO, 41, URSS, M., 1980, 3–36 | MR | Zbl

[8] Hambleton I., Ranicki A., Taylor L., “Round $L$-theory”, J. of Pure and Appl. Algebra, 47 (1987), 131–154 | DOI | MR | Zbl

[9] Hambleton I., “Projective surgery obstructions on closed manifolds”, Lect. Notes, 943 (1982), 102–131 | MR

[10] Khemblton I., Kharshiladze A. F., “Spektralnaya posledovatelnost v teorii perestroek”, Matem. sb., 183 (1992), 3–14 | MR

[11] Muranov Yu. V., “Otnositelnye gruppy Uolla i dekoratsii”, Matem. sb., 185:12 (1994), 79–100 | Zbl

[12] Quillen D. G., Homotopical Algebra, Lect. Notes, 43, 1967 | MR | Zbl

[13] Gabriel P., Tsisman M., Kategorii chastnykh i teoriya gomotopii, Mir, M., 1971 | MR | Zbl

[14] Maklein S., Gomologiya, Mir, M., 1966

[15] Kharshiladze A. F., “Obobschennyi invariant Braudera–Livsi”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 379–401 | MR | Zbl

[16] Muranov Yu. V., “Prepyatstviya k perestroikam dvulistnykh nakrytii”, Matem. sb., 131(173) (1986), 347–356 | Zbl

[17] Muranov Yu. V., Kharshiladze A. F., “Gruppy Braudera–Livsi abelevykh $2$-grupp”, Matem. sb., 181 (1990), 1061–1098 | MR | Zbl

[18] Muranov Yu. V., “Gruppy prepyatstvii k rasschepleniyu vdol odnostoronnikh podmnogoobrazii”, UMN, 50:1 (1995), 205–206 | MR | Zbl