Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1995_59_5_a3, author = {D. N. Zarnadze}, title = {A~generalization of the method of least squares for operator equations in some {Frechet} spaces}, journal = {Izvestiya. Mathematics }, pages = {935--948}, publisher = {mathdoc}, volume = {59}, number = {5}, year = {1995}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a3/} }
TY - JOUR AU - D. N. Zarnadze TI - A~generalization of the method of least squares for operator equations in some Frechet spaces JO - Izvestiya. Mathematics PY - 1995 SP - 935 EP - 948 VL - 59 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a3/ LA - en ID - IM2_1995_59_5_a3 ER -
D. N. Zarnadze. A~generalization of the method of least squares for operator equations in some Frechet spaces. Izvestiya. Mathematics , Tome 59 (1995) no. 5, pp. 935-948. http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a3/
[1] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR
[2] Zarnadze D. N., “O predstavleniyakh topologii prostranstv osnovnykh i obobschennykh funktsii”, Tez. mezhd. konferentsii po “Obobschennym funktsiyam” (Moskva, 24–28 noyabrya 1980 g.), Tr. MIAN SSSR, Nauka, M., 1981, 250–256 | MR
[3] Floret K., “Continuous Norms on locally convex strict inductive limit spaces”, Math. Zeitschrift, 188 (1984), 75–88 | DOI | MR | Zbl
[4] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979 | MR
[5] Albinus G., Lineare Approximationstheorie in metrischer Vektorräumen, Dis. zur erlangung des Akademischen Grades eines Habilitirten Doktors der Naturwissenschaften, Dresden, {TU, 99S}
[6] Zarnadze D. N., “Zamechanie o teoreme metrizatsii lineinogo topologicheskogo prostranstva”, Matem. zametki, 37:5 (1985), 763–773 | MR | Zbl
[7] Zarnadze D. N., “O prostranstvakh Freshe s nekotorymi klassami proksimalnykh podprostranstv”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 711–725 | MR
[8] Zarnadze D. N., Ugulava D. K., “O nailuchshikh priblizheniyakh funktsii na otkrytykh intervalakh”, Tr. IVM AN GSSR, XXVII:1 (1987), 59–71 | MR
[9] Zarnadze D. N., Ugulava D. K., “Ob algoritmakh priblizheniya nepreryvnykh funktsii na otkrytykh intervalakh”, Tr. IVM AN Gruzii, XXIX:1 (1990), 139–145 | MR
[10] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR
[11] Dubinsky E., The structure of Nuclear Frechet-Spaces, Lecture Notes Math., 720, Springer, Berlin–Heidelberg–New York, 1979 | MR
[12] Zarnadze D. N., “Teoremy dvoistvennosti ekstremalnykh zadach dlya odnogo klassa nevypuklykh funktsii”, Tr. IVM AN GSSR, XXVII:1 (1987), 52–58 | MR
[13] Dubinsky E., Vogt D., “Complemented subspaces in tame power series spaces”, Studia Math., XCIII (1989), 71–85 | MR
[14] Kramar E., “Locally convex topological vector spaces with hilbertian seminorms”, Rev. Roum. Math. pures et appl., XXVI:1 (1981), 55–63 | MR
[15] Kramar E., “Linear operations in $H$-locally convex spaces”, Rev. Roum. Math. pures et appl., XXVI:1 (1981), 63–79 | MR
[16] Zarnadze D. N., “O nekotorykh topologicheskikh i geometricheskikh svoistvakh prostranstv Freshe–Gilberta”, Izv. RAN. Ser. matem., 56:5 (1992), 1001–1020 | Zbl
[17] Browder F. E., “Functional analysis and partial differential equations, I”, Math. Ann., 138 (1959), 55–79 | DOI | MR | Zbl
[18] Poppenberg M. A., “A sufficient conditions of type $(\Omega )$ for tame splitting of short exact sequences of Frechet spaces”, Manuscr. Math., 72 (1991), 257–274 | DOI | MR | Zbl
[19] Vogt D., “Eine Characterisierung der Potenzreihenräume von endlichen typ und ihre Folgerungen”, Manuscr. Math., 37 (1982), 269–301 | DOI | MR | Zbl
[20] Aytuna A., “Stein space $M$ for which $O(M)$ is isomorphic to a power series space”, Advances in the theory of Frechet Spaces, Kluwer Acad. Publ., 1989, 115–154 | MR
[21] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR