A~generalization of the method of least squares for operator equations in some Frechet spaces
Izvestiya. Mathematics , Tome 59 (1995) no. 5, pp. 935-948.

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical method of least squares is extended to equations with an operator between Frechet spaces. Approximate solutions are obtained by minimizing the discrepancy relative to a metric, which in the Hilbert space case coincides with the metric induced by the scalar product. The convergence of a sequence of approximate solutions to the exact solution is proved. A concrete realization of the results obtained is given in the case of continuously invertible and so-called tamely invertible operators that map Frechet spaces of power series of finite and infinite type, Frechet spaces of rapidly decreasing sequences and the Frechet spaces of analytic functions given in Stein's monograph to themselves.
@article{IM2_1995_59_5_a3,
     author = {D. N. Zarnadze},
     title = {A~generalization of the method of least squares for operator equations in some {Frechet} spaces},
     journal = {Izvestiya. Mathematics },
     pages = {935--948},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a3/}
}
TY  - JOUR
AU  - D. N. Zarnadze
TI  - A~generalization of the method of least squares for operator equations in some Frechet spaces
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 935
EP  - 948
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a3/
LA  - en
ID  - IM2_1995_59_5_a3
ER  - 
%0 Journal Article
%A D. N. Zarnadze
%T A~generalization of the method of least squares for operator equations in some Frechet spaces
%J Izvestiya. Mathematics 
%D 1995
%P 935-948
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a3/
%G en
%F IM2_1995_59_5_a3
D. N. Zarnadze. A~generalization of the method of least squares for operator equations in some Frechet spaces. Izvestiya. Mathematics , Tome 59 (1995) no. 5, pp. 935-948. http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a3/

[1] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1979 | MR

[2] Zarnadze D. N., “O predstavleniyakh topologii prostranstv osnovnykh i obobschennykh funktsii”, Tez. mezhd. konferentsii po “Obobschennym funktsiyam” (Moskva, 24–28 noyabrya 1980 g.), Tr. MIAN SSSR, Nauka, M., 1981, 250–256 | MR

[3] Floret K., “Continuous Norms on locally convex strict inductive limit spaces”, Math. Zeitschrift, 188 (1984), 75–88 | DOI | MR | Zbl

[4] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979 | MR

[5] Albinus G., Lineare Approximationstheorie in metrischer Vektorräumen, Dis. zur erlangung des Akademischen Grades eines Habilitirten Doktors der Naturwissenschaften, Dresden, {TU, 99S}

[6] Zarnadze D. N., “Zamechanie o teoreme metrizatsii lineinogo topologicheskogo prostranstva”, Matem. zametki, 37:5 (1985), 763–773 | MR | Zbl

[7] Zarnadze D. N., “O prostranstvakh Freshe s nekotorymi klassami proksimalnykh podprostranstv”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 711–725 | MR

[8] Zarnadze D. N., Ugulava D. K., “O nailuchshikh priblizheniyakh funktsii na otkrytykh intervalakh”, Tr. IVM AN GSSR, XXVII:1 (1987), 59–71 | MR

[9] Zarnadze D. N., Ugulava D. K., “Ob algoritmakh priblizheniya nepreryvnykh funktsii na otkrytykh intervalakh”, Tr. IVM AN Gruzii, XXIX:1 (1990), 139–145 | MR

[10] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[11] Dubinsky E., The structure of Nuclear Frechet-Spaces, Lecture Notes Math., 720, Springer, Berlin–Heidelberg–New York, 1979 | MR

[12] Zarnadze D. N., “Teoremy dvoistvennosti ekstremalnykh zadach dlya odnogo klassa nevypuklykh funktsii”, Tr. IVM AN GSSR, XXVII:1 (1987), 52–58 | MR

[13] Dubinsky E., Vogt D., “Complemented subspaces in tame power series spaces”, Studia Math., XCIII (1989), 71–85 | MR

[14] Kramar E., “Locally convex topological vector spaces with hilbertian seminorms”, Rev. Roum. Math. pures et appl., XXVI:1 (1981), 55–63 | MR

[15] Kramar E., “Linear operations in $H$-locally convex spaces”, Rev. Roum. Math. pures et appl., XXVI:1 (1981), 63–79 | MR

[16] Zarnadze D. N., “O nekotorykh topologicheskikh i geometricheskikh svoistvakh prostranstv Freshe–Gilberta”, Izv. RAN. Ser. matem., 56:5 (1992), 1001–1020 | Zbl

[17] Browder F. E., “Functional analysis and partial differential equations, I”, Math. Ann., 138 (1959), 55–79 | DOI | MR | Zbl

[18] Poppenberg M. A., “A sufficient conditions of type $(\Omega )$ for tame splitting of short exact sequences of Frechet spaces”, Manuscr. Math., 72 (1991), 257–274 | DOI | MR | Zbl

[19] Vogt D., “Eine Characterisierung der Potenzreihenräume von endlichen typ und ihre Folgerungen”, Manuscr. Math., 37 (1982), 269–301 | DOI | MR | Zbl

[20] Aytuna A., “Stein space $M$ for which $O(M)$ is isomorphic to a power series space”, Advances in the theory of Frechet Spaces, Kluwer Acad. Publ., 1989, 115–154 | MR

[21] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR