A~description of characteristic classes of real submanifolds in complex manifolds via
Izvestiya. Mathematics , Tome 59 (1995) no. 5, pp. 899-918.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a complex manifold, $M\subset X$ a (closed, orient) real submanifold, and $S\subset M$ the set of RC-singular points of $M$. We study the connection between the global topological characteristics of $S$ and the topology of $M$ and $X$. For the case of discrete $S$ we introduce a notion of an isolate RC-singular point and obtain a formula expressing the sun of indices over $S$ in terms of the Chern classes of $X$ and the Pontryagin classes of $M$ and of the normal bundle to $M$ in $X$ (Theorem 1). In the general case we express the Poincare dual to $S$ (Theorem 2) and the Poincare duals to some cycles carried by subsets of $S$ (Theorem 3) in a similar way.
@article{IM2_1995_59_5_a1,
     author = {A. V. Domrin},
     title = {A~description of characteristic classes of real submanifolds in complex manifolds via},
     journal = {Izvestiya. Mathematics },
     pages = {899--918},
     publisher = {mathdoc},
     volume = {59},
     number = {5},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a1/}
}
TY  - JOUR
AU  - A. V. Domrin
TI  - A~description of characteristic classes of real submanifolds in complex manifolds via
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 899
EP  - 918
VL  - 59
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a1/
LA  - en
ID  - IM2_1995_59_5_a1
ER  - 
%0 Journal Article
%A A. V. Domrin
%T A~description of characteristic classes of real submanifolds in complex manifolds via
%J Izvestiya. Mathematics 
%D 1995
%P 899-918
%V 59
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a1/
%G en
%F IM2_1995_59_5_a1
A. V. Domrin. A~description of characteristic classes of real submanifolds in complex manifolds via. Izvestiya. Mathematics , Tome 59 (1995) no. 5, pp. 899-918. http://geodesic.mathdoc.fr/item/IM2_1995_59_5_a1/

[1] Bott R., Tu L., Differentsialnye formy v algebraicheskoi topologii, Mir, M., 1989 | MR

[2] Dold A., Lektsii po algebraicheskoi topologii, Mir, M., 1976 | MR

[3] Domrin A. V., “O chisle $\mathbf R\mathbf C$-osobykh tochek 4-mernogo veschestvennogo podmnogoobraziya v 5-mernom kompleksnom mnogoobrazii”, Matem. zametki, 57 (1995), 240–245 | MR | Zbl

[4] Tom R., Levin G., “Osobennosti differentsiruemykh otobrazhenii”, Osobennosti differentsiruemykh otobrazhenii, Mir, M., 1968, 9–102 | MR

[5] Fomenko A. T., Fuks D. B., Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR

[6] Kharlamov V. M., Eliashberg Ya. M., “O chisle kompleksnykh tochek veschestvennoi poverkhnosti v kompleksnoi poverkhnosti”, Tr. mezhdunarodnoi topologicheskoi konferentsii, Nauka, L., 1982, 143–148

[7] Khirsh M., Differentsialnaya topologiya, Mir, M., 1980

[8] Khyuzmoller D., Rassloennye prostranstva, Mir, M., 1970

[9] Bishop E., “Differentiable manifolds in complex euclidean space”, Duke Math. J., 32 (1965), 1–21 | DOI | MR | Zbl

[10] Chern S. S., “On the characteristic classes of complex sphere bundles and algebraic varieties”, Amer. J. of Math., 75 (1953), 565–597 | DOI | MR | Zbl

[11] Forstneric̆ F., “Complex tangents of real surfaces in complex surfaces”, Duke Math. J., 67 (1992), 353–376 | DOI | MR | Zbl

[12] Harvey R., Lawson H. B., “A theory of characteristic currents associated with a singular connection”, Astèrisque, 213 (1993), 1–268 | MR

[13] Harvey R., Lawson H. B., Geometric residue theorems, Preprint MSRI, Berkeley, 1994 | MR

[14] Ishikawa G., Ohmoto T., “Local invariants of singular surfaces in an almost complex four-manifold”, Ann. of Global Anal. and Geom., 11 (1993), 125–133 | DOI | MR | Zbl

[15] Lai H.-F., “Characteristic classes of real submanifolds immersed in complex manifolds”, Trans. of AMS, 172 (1972), 1–33 | DOI | MR

[16] Levine H., “A generalization of a formula of Todd”, Anais da Acad. Bras. de Ciencias, 37 (1965), 369–384 | MR | Zbl

[17] Levine H., “The singularities $S_1^q$”, Illinois J. of Math., 8 (1964), 152–186 | MR

[18] Porteous I. R., “Simple singularities of maps”, Lect. Notes Math., 192 (1971), 286–307 | DOI | MR

[19] Webster S. M., “The Euler and Pontrjagin numbers of an $n$-manifold in $\mathbf C^n$”, Comm. Math. Helv., 60 (1985), 193–216 | DOI | MR | Zbl