A~limit theorem for $p$-adic-valued probability distributions
Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 647-662.

Voir la notice de l'article provenant de la source Math-Net.Ru

Probability models in which probabilities, defined in the sense of von Mises as limits of relative frequencies, can belong to $p$-adic number fields appeared in connection with the problem of the probabilistic interpretation of wave functions in $p$-adic-valued quantum mechanics and field theory. Here we present a variant of axiomatic $p$-adic probability theory in the framework of the theory of analytic distributions on $p$-adic spaces. We prove a theorem on the existence of $p$-adic-valued probability distributions on $p$-adic sequences and obtain a limit theorem for sums of independent random variables (an analogue of the law of large numbers).
@article{IM2_1995_59_3_a7,
     author = {A. Yu. Khrennikov},
     title = {A~limit theorem for $p$-adic-valued probability distributions},
     journal = {Izvestiya. Mathematics },
     pages = {647--662},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a7/}
}
TY  - JOUR
AU  - A. Yu. Khrennikov
TI  - A~limit theorem for $p$-adic-valued probability distributions
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 647
EP  - 662
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a7/
LA  - en
ID  - IM2_1995_59_3_a7
ER  - 
%0 Journal Article
%A A. Yu. Khrennikov
%T A~limit theorem for $p$-adic-valued probability distributions
%J Izvestiya. Mathematics 
%D 1995
%P 647-662
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a7/
%G en
%F IM2_1995_59_3_a7
A. Yu. Khrennikov. A~limit theorem for $p$-adic-valued probability distributions. Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 647-662. http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a7/

[1] Volovich I. V., “$p$-adic string”, Class. Quant. Grav., 4 (1987), 83–87 | DOI | MR

[2] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[3] Schikhov W., Ultrametric calculus, Univ. Press, Cambridge, 1984 | MR

[4] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-adic numbers in mathematical physics, World Sc. Publ., Singapoure, 1993

[5] Vladimirov V. S., Volovich I. V., “$p$-adic quantum mechanics”, Commun. Math. Phys., 123 (1989), 659–676 | DOI | MR | Zbl

[6] Khrennikov A. Yu., “$p$-adic quantum mechanics with $p$-adic valued functions”, J. Math. Phys., 32 (1991), 932–937 | DOI | MR | Zbl

[7] Khrennikov A. Yu., “Matematicheskie metody nearkhimedovoi fiziki”, UMN, 45:4 (1990), 79–110 | MR | Zbl

[8] Mizes R., Veroyatnost, statistika, istina, Gos. izd-vo, M.–L., 1933

[9] Mises R., The Mathematical Theory of Probability and Statistics, Academic, London, 1964 | MR | Zbl

[10] Mises R., “Grundlagen der Wahrscheinlichkeitsrechnung”, Math. Z., 5 (1919), 52–99 | DOI | MR | Zbl

[11] Khrennikov A. Yu., “$p$-adicheskaya veroyatnost i statistika”, DAN, 322:6 (1992), 1075–1079 | MR | Zbl

[12] Khrennikov A. Yu., Statisticheskaya interpretatsiya $p$-adicheskoi kvantovoi mekhaniki, Preprint No 242 16, Inst. Obschei Fiz. RAN, 1992

[13] Khrennikov A. Yu., “Theory of probability and theory of numbers”, Com. Math. Univ. Sancti Pauli, 41:2 (1992), 135–140 | MR | Zbl

[14] Kolmogorov A. N., Osnovnye ponyatiya teorii veroyatnostei, Nauka, M., 1974 | MR

[15] Khrennikov A. Yu., “Aksiomatika $p$-adicheskoi teorii veroyatnostei”, DAN, 326:5 (1992), 796–800 | Zbl

[16] Monna A., Springer T., “Integration non-Archimedienne. 1; 2”, Indag. Math., 25 (1963), 634–653 | MR

[17] Schikhov W., Non-Archimedean harmonic analysis, Catholic Univ. Press, Nijmegen, 1967

[18] Monna A., Analyse non-Archimedienne, Springer, N.Y., 1970 | MR | Zbl

[19] Khrennikov A. Yu., Endo M., “Neogranichennost $p$-adicheskogo gaussovskogo raspredeleniya”, Izv. AN. Ser. matem., 56:5 (1992), 1104–1115 | MR | Zbl

[20] Tornier E., Wahrscheinlichkeitnung und allgemeine Integraionstheorie, Univ. Press, Leipzig, 1936

[21] Meyer P. A., Quantum probability for probabilists, Inst. Math. Press, Strasbourg, 1992 | MR

[22] Accardi L., “On the quantum Feynman–Kac formula”, Rendiconti Sem. Mat. e Fis. Milano, 48 (1978) | MR | Zbl

[23] Holevo A. S., Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, 1992 | MR | Zbl

[24] Khrennikov A. Yu., $p$-adic value distributions in mathematical physics, Kluwer Academic Publishers, Dordrecht, 1994 | MR | Zbl