Multiplicative arithmetic of theta-series of odd quadratic forms
Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 517-578

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the action of the operators of symplectic Hecke rings of arbitrary degree on the theta-series of positive definite quadratic forms in an odd number of variables with vector-valued spherical coefficients corresponding to irreducible representations of the unitary group. We find a correspondence between generators of the Hecke rings and generalized Eichler–Brandt matrices. We apply these results to obtain conditions for linear dependence of theta-series, necessary conditions for lifting automorphic eigenforms on the orthogonal group to Siegel modular eigenforms, and an Euler expansion for symmetric Dirichlet series as a product of local zeta-functions with coefficients computed explicitly in terms of Eichler–Brandt matrices.
@article{IM2_1995_59_3_a3,
     author = {V. G. Zhuravlev},
     title = {Multiplicative arithmetic of theta-series of odd quadratic forms},
     journal = {Izvestiya. Mathematics },
     pages = {517--578},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a3/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Multiplicative arithmetic of theta-series of odd quadratic forms
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 517
EP  - 578
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a3/
LA  - en
ID  - IM2_1995_59_3_a3
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Multiplicative arithmetic of theta-series of odd quadratic forms
%J Izvestiya. Mathematics 
%D 1995
%P 517-578
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a3/
%G en
%F IM2_1995_59_3_a3
V. G. Zhuravlev. Multiplicative arithmetic of theta-series of odd quadratic forms. Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 517-578. http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a3/