Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic
Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 499-516
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the analogue of the Kurosh subgroup theorem for closed normal subgroups of free constructions of profinite groups and also corresponding analogues of abstract structural results for closed normal subgroups of more general free constructions of profinite groups (amalgamated free products, HNN-extensions). The structure theorem is used to obtain a description of the congruence-kernel $C$ of the arithmetic lattice $\Gamma$ of the group of $K$-rational points $G=\mathbf G(K)$ of a semisimple connected algebraic group $\mathbf G$ of $K$-rank 1 over a non-Archimedean local field $K$.
@article{IM2_1995_59_3_a2,
author = {P. A. Zalesskii},
title = {Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic},
journal = {Izvestiya. Mathematics },
pages = {499--516},
publisher = {mathdoc},
volume = {59},
number = {3},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a2/}
}
TY - JOUR AU - P. A. Zalesskii TI - Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic JO - Izvestiya. Mathematics PY - 1995 SP - 499 EP - 516 VL - 59 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a2/ LA - en ID - IM2_1995_59_3_a2 ER -
%0 Journal Article %A P. A. Zalesskii %T Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic %J Izvestiya. Mathematics %D 1995 %P 499-516 %V 59 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a2/ %G en %F IM2_1995_59_3_a2
P. A. Zalesskii. Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic. Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 499-516. http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a2/