Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic
Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 499-516.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the analogue of the Kurosh subgroup theorem for closed normal subgroups of free constructions of profinite groups and also corresponding analogues of abstract structural results for closed normal subgroups of more general free constructions of profinite groups (amalgamated free products, HNN-extensions). The structure theorem is used to obtain a description of the congruence-kernel $C$ of the arithmetic lattice $\Gamma$ of the group of $K$-rational points $G=\mathbf G(K)$ of a semisimple connected algebraic group $\mathbf G$ of $K$-rank 1 over a non-Archimedean local field $K$.
@article{IM2_1995_59_3_a2,
     author = {P. A. Zalesskii},
     title = {Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic},
     journal = {Izvestiya. Mathematics },
     pages = {499--516},
     publisher = {mathdoc},
     volume = {59},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a2/}
}
TY  - JOUR
AU  - P. A. Zalesskii
TI  - Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 499
EP  - 516
VL  - 59
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a2/
LA  - en
ID  - IM2_1995_59_3_a2
ER  - 
%0 Journal Article
%A P. A. Zalesskii
%T Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic
%J Izvestiya. Mathematics 
%D 1995
%P 499-516
%V 59
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a2/
%G en
%F IM2_1995_59_3_a2
P. A. Zalesskii. Normal subgroups of free constructions of profinite groups and the congruence kernel in the case of positive characteristic. Izvestiya. Mathematics , Tome 59 (1995) no. 3, pp. 499-516. http://geodesic.mathdoc.fr/item/IM2_1995_59_3_a2/

[1] Melnikov O. V., “Normalnye deliteli svobodnykh prokonechnykh grupp”, Izv. AN SSSR. Ser. matem., 42:1 (1978), 3–25 | MR | Zbl

[2] Lubotzky A., “Free Quotients and the Congruence Kernel of $\operatorname {SL}_2$”, J. Algebra, 77 (1982), 411–418 | DOI | MR | Zbl

[3] Lubotzky A., “Lattices in Rank One Groups Over Local Fields”, Geometric and Functional Analisys, 1991, 405–431 | DOI | MR | Zbl

[4] Zalesskii P. A., Melnikov O. V., “Podgruppy prokonechnykh grupp, deistvuyuschikh na derevyakh”, Matem. sb., 135 (177):4 (1988), 419–439

[5] Zalesskii P. A., “Geometricheskaya kharakterizatsiya svobodnykh konstruktsii prokonechnykh grupp”, Sib. matem. zhurn., 30 (1989), 73–84 | MR | Zbl

[6] Zalesskii P. A., Melnikov O. V., “Fundamentalnye gruppy grafov prokonechnykh grupp”, Algebra i analiz, 1:4 (1989), 117–135 | MR | Zbl

[7] Lubotzky A., Dries V. D., “Subgroups of free profinite groups and large subfields of $\widetilde Q$”, Israel J. of Mathematics, 39:1–2 (1981), 25–42 | DOI | MR

[8] Melnikov O. V., “Proektivnye predely svobodnykh prokonechnykh grupp”, Dokl. ANB, 24:11 (1980), 968–970 | MR | Zbl

[9] Melnikov O. V., “Svobodnye prokonechnye proizvedeniya i gomologii”, Izv. AN SSSR. Ser. matem., 53:1 (1989), 97–120 | MR | Zbl

[10] Serr Zh.-P., “Derevya amalgamy i $\operatorname {SL}_2$”, Matematika, 18:1 (1974), 3–51 | Zbl

[11] Zalesskii P. A., “Open subgroups of free profinite products”, Contemporary Math., Part 1, 131, Amer. Math. Soc., 473–492 | MR | Zbl

[12] Melnikov O. V., “Kharakterizatsiya dostizhimykh podgrupp svobodnykh prokonechnykh grupp”, Dokl. AN BSSR, 42:1 (1978), 3–25 | MR | Zbl

[13] Serre J.-P., “Le probleme des groupes de congruence pour $\operatorname {SL}_2$”, Ann. Math., 92 (1970), 867–870 | DOI | MR

[14] Melnikov O. V., “Kongruents-yadro dlya $\operatorname {SL}_2$”, DAN SSSR, 17 (1976), 867–870 | Zbl

[15] Zalesskii P. A., “Struktura kongruents-yadra dlya $\operatorname {SL}_2$ v sluchae globalnogo polya polozhitelnoi kharakteristiki”, Matem. sb., 183:12 (1992), 117–124 | MR | Zbl

[16] Mason A. W., “Congruence hulls in $\operatorname {SL}_n$”, J. Pure and Appl. Algebra, 89 (1993), 255–272 | DOI | MR | Zbl

[17] Fine B., Algebraic theory of the Bianchi groups, Pure and applied mathematics: A series of Monographs and Texbooks, 1989 | MR