Integral limit theorems for sums of additive functions with shifted arguments
Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 401-426.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we find necessary and sufficient conditions for the vanishing of the limit distribution for a linear combination of two real-valued additive functions. We obtain results for $g_1(an+b)/B_1(x)+g_2(cn+d)/B_2(x)-A(x)$, where $a>0$, $b,c>0$, and $d$ are integers with $ad-bc\ne 0$, that are almost as strong as in the case of a single additive function. As an application, we resolve a conjecture of Katai.
@article{IM2_1995_59_2_a8,
     author = {N. M. Timofeev},
     title = {Integral limit theorems for sums of additive functions with shifted arguments},
     journal = {Izvestiya. Mathematics },
     pages = {401--426},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a8/}
}
TY  - JOUR
AU  - N. M. Timofeev
TI  - Integral limit theorems for sums of additive functions with shifted arguments
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 401
EP  - 426
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a8/
LA  - en
ID  - IM2_1995_59_2_a8
ER  - 
%0 Journal Article
%A N. M. Timofeev
%T Integral limit theorems for sums of additive functions with shifted arguments
%J Izvestiya. Mathematics 
%D 1995
%P 401-426
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a8/
%G en
%F IM2_1995_59_2_a8
N. M. Timofeev. Integral limit theorems for sums of additive functions with shifted arguments. Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 401-426. http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a8/

[1] Ruzsa I., “The law of large numbers for additive functions”, Studia Scient. Math. Hung., 14 (1979), 247–253 | MR | Zbl

[2] Kubilyus I. P., Veroyatnostnye metody v teorii chisel, Gos. izd-vo polit. i nauchn. literatury Lit. SSR, Vilnyus, 1962 | MR

[3] Elliot P. D. T. A., Arithmetic Functions and Integer, Grünlehren der mathematischen Wissenschaften, 272, Springer-Verlag, 1984

[4] Hildebrand A., “An Erdös–Wintner theorem for differences of additive functions”, Transactions of the American Math. Soc., 310:1 (1988), 257–274 | DOI | MR

[5] Timofeev N. M., Usmanov Kh. Kh., “Raspredelenie znachenii summy additivnykh funktsii so sdvinutymi argumentami”, Matem. zametki, 52:5 (1992), 113–123 | MR

[6] Halberstam H., Richert H.-E., Seive Methods, Academic Press, London–New York–San Francisco, 1974 | MR | Zbl

[7] Ruzsa I., “On the concentration of additive functions”, Acta Math. Acad. Sci. Hungar., 36 (1980), 215–232 | DOI | MR | Zbl

[8] Elliot P. D. T. A., Probabilistic Number Theory, II, Grund. der math. Wissensch., 240, Springer-Verlag, 1980 | MR

[9] Timofeev N. M., “On the distribution of additive arithmetical functions on the set of shifted primes”, Probability Theory and Math. Statistics, Proceedings of the Fifth Vilnius Conference (1989), 2, 495–504 | MR

[10] Levin B. V., Timofeev N. M., “Neskolko integralnykh predelnykh teorem dlya additivnykh funktsii”, Litovskii matem. sb., 16:4 (1976), 133–147 | MR | Zbl

[11] Elliot P. D. T. A., Probabilistic Number Theory, I, Grund. der math. Wissensch., 239, Springer-Verlag, 1979

[12] Lukach E., Kharakteristicheskie funktsii, Nauka, M., 1979 | MR | Zbl