On the decomposition of automorphisms of free modules into simple factors
Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 333-351.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study decompositions of automorphisms of various free modules into products of transvections and dilations. In particular, for a free $\mathbb Z$-module $M=\mathbb Z^n$ (where $n\geqslant 3$) we show that any automorphism $\sigma\in\operatorname{GL}_n(M)$ can be expressed as a product of not more than $2n+5$ transvections and one simple transformation which is a transvection if $\sigma\in\operatorname{SL}_n(M)$ and a dilation otherwise. As a corollary we obtain that for $n\geqslant 3$ the width of the group $\operatorname{SL}_n(\mathbb Z)$, with respect to the set of commutators, does not exceed 10.
@article{IM2_1995_59_2_a4,
     author = {V. G. Bardakov},
     title = {On the decomposition of automorphisms of free modules into simple factors},
     journal = {Izvestiya. Mathematics },
     pages = {333--351},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a4/}
}
TY  - JOUR
AU  - V. G. Bardakov
TI  - On the decomposition of automorphisms of free modules into simple factors
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 333
EP  - 351
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a4/
LA  - en
ID  - IM2_1995_59_2_a4
ER  - 
%0 Journal Article
%A V. G. Bardakov
%T On the decomposition of automorphisms of free modules into simple factors
%J Izvestiya. Mathematics 
%D 1995
%P 333-351
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a4/
%G en
%F IM2_1995_59_2_a4
V. G. Bardakov. On the decomposition of automorphisms of free modules into simple factors. Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 333-351. http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a4/

[1] Kargapolov M. I., Merzlyakov Yu. I., Osnovy teorii grupp, 3-e izd., Nauka, M., 1982 | MR | Zbl

[2] Merzlyakov Yu. I., “Algebraicheskie lineinye gruppy kak polnye gruppy avtomorfizmov i zamknutost ikh verbalnykh podgrupp”, Algebra i logika, 6:1 (1967), 83–94 | MR | Zbl

[3] Carter D., Keller G., “Bounded elementary generation of $\operatorname {SL}_{n}(\frak d)$”, Amer. J. Math., 105:3 (1983), 673–687 | DOI | MR | Zbl

[4] Zakiryanov K. Kh., “Konechnost shiriny simplekticheskoi gruppy nad koltsami algebraicheskikh chisel otnositelno elementarnykh matrits”, Algebra i logika, 24:6 (1985), 667–673 | MR | Zbl

[5] Tavgen O. N., “Ogranichennaya porozhdaemost grupp Shevalle nad koltsami $S$-tselykh algebraicheskikh chisel”, Izv. AN SSSR. Ser. matem., 54:1 (1990), 97–122 | MR | Zbl

[6] Van der Kallen W., “$\operatorname {SL}_{3}(\mathbb C[x])$ does not have bounded word length”, Lecture Notes in Math., 366, Springer-Verlag, Berlin–New York, 1982, 357–361 | MR

[7] O'Mira O., “Lektsii o lineinykh gruppakh”, Avtomorfizmy klassicheskikh grupp, Mir, M., 1976, 57–167 | MR

[8] Ellers E., Lausch H., “Generators for classical groups of modules over local rings”, J. Geometry, 39:1–2 (1990), 60–79 | DOI | MR | Zbl

[9] Djoković D. Z., “Characterization of dilatations which are expressible as a product of three transvections or three reflections”, Proc. Amer. Math. Soc., 92:3 (1984), 315–319 | DOI | MR | Zbl

[10] Korobov A. A., “O razlozhenii prostogo preobrazovaniya v proizvedenie prostykh preobrazovanii s zadannymi parametrami”, Nekotorye problemy differentsialnykh uravnenii i diskretnoi matematiki, Novosibirsk, 1986, 28–33 | MR | Zbl

[11] Merzlyakov Yu. I., Ratsionalnye gruppy, Nauka, M., 1980 | MR

[12] Thompson R. C., “Commutators in the special linear and general linear groups”, Trans. Amer. Math. Soc., 101:1 (1961), 16–33 | DOI | MR | Zbl

[13] Gow R., “Commutators in the symplectic groups”, Arch. Math., 50:3 (1988), 204–209 | DOI | MR | Zbl

[14] Newman M., “Unimodular commutators”, Proc. Amer. Math. Soc., 101:4 (1987), 605–609 | DOI | MR | Zbl

[15] Dennis R. K., Vaserstein L. N., “On a question of M. Newman on the number of commutators”, J. Algebra, 118:1 (1988), 150–161 | DOI | MR | Zbl

[16] Vasershtein L. N., “Stabilnyi rang kolets i razmernost topologicheskikh prostranstv”, Funkts. analiz i ego prilozh., 5:2 (1971), 17–27 | MR | Zbl

[17] Kourovskaya tetrad: Nereshennye voprosy teorii grupp, 11-e izd., Novosibirsk, 1990

[18] Carter D., Keller G., “Elementary expressions for unimodular matrices”, Commun. Algebra, 12:3–4 (1984), 379–389 | DOI | MR | Zbl

[19] Maltsev A. N., Osnovy lineinoi algebry, Nauka, M., 1970 | Zbl

[20] Sarkisyan R. A., “Problema sopryazhennosti dlya tselochislennykh matrits”, Matem. zametki, 25:6 (1979), 811–824 | MR | Zbl

[21] Grunewald F., Solution of the Conjugacy Problem in Certain Arithmetic Groups, North Holland, Amsterdam, 1979 | MR

[22] Vaserstein L., Wheland E., “Factorization of invertibles matrices over rings of stable rank one”, J. Austral Math. Soc. Ser. {\rom A}, 48:3 (1990), 455–460 | DOI | MR | Zbl

[23] Vinogradov I. M., Osnovy teorii chisel, Nauka, M., 1972 | MR

[24] Vaserstein L. N., Wheland E., “Commutators and companion matrices over rings of stable rank $1$”, Linear Algebra Appl., 142:1 (1990), 263–277 | DOI | MR | Zbl