Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1995_59_2_a2, author = {D. V. Anosov}, title = {On the behaviour in the {Euclidean} or {Lobachevsky} plane of trajectories that cover trajectories of flows on closed {surfaces.~III}}, journal = {Izvestiya. Mathematics }, pages = {287--320}, publisher = {mathdoc}, volume = {59}, number = {2}, year = {1995}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a2/} }
TY - JOUR AU - D. V. Anosov TI - On the behaviour in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~III JO - Izvestiya. Mathematics PY - 1995 SP - 287 EP - 320 VL - 59 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a2/ LA - en ID - IM2_1995_59_2_a2 ER -
%0 Journal Article %A D. V. Anosov %T On the behaviour in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~III %J Izvestiya. Mathematics %D 1995 %P 287-320 %V 59 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a2/ %G en %F IM2_1995_59_2_a2
D. V. Anosov. On the behaviour in the Euclidean or Lobachevsky plane of trajectories that cover trajectories of flows on closed surfaces.~III. Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 287-320. http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a2/
[1] Anosov D. V., “O povedenii traektorii na ploskosti Evklida ili Lobachevskogo, nakryvayuschikh traektorii potokov na zamknutykh poverkhnostyakh, I”, Izv. AN SSSR. Ser. matem., 51:1 (1987), 16–43 | MR | Zbl
[2] Anosov D. V., “O povedenii traektorii na ploskosti Evklida ili Lobachevskogo, nakryvayuschikh traektorii potokov na zamknutykh poverkhnostyakh, II”, Izv. AN SSSR. Ser. matem., 52:3 (1988), 451–478 | MR | Zbl
[3] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, M.-L., 1949, 550 pp.
[4] Anosov D. V., “O beskonechnykh krivykh na tore i zamknutykh poverkhnostyakh otritsatelnoi eilerovoi kharakteristiki”, Optimizatsiya i differentsialnye igry, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 185, 1988, 30–53 | MR
[5] Anosov D. V., “Kak mogut ukhodit v beskonechnost krivye na universalnoi nakryvayuschei ploskosti, nakryvayuschie nesamoperesekayuschiesya krivye na zamknutoi poverkhnosti”, Statisticheskaya mekhanika i teoriya dinamicheskikh sistem, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 191, 1989, 34–44 | MR | Zbl
[6] Anosov D. V., “O beskonechnykh krivykh na butylke Kleina”, Matem. sb., 180:1 (1989), 39–56 | MR | Zbl
[7] Anosov D. V., “Potoki na poverkhnostyakh”, Topologiya i ee primeneniya, Trudy Mezhdunarodnoi topologicheskoi konferentsii (Baku, 3–8 oktyabrya 1987 g.), Tr. Matem. in-ta im. V. A. Steklova RAN, 193, 1992, 10–14 | MR | Zbl