Differential geometry and quantization on a~locally compact group
Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 271-286.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary locally compact group $G$, we describe the structure of the Lie algebra $\chi(G)$ of vector fields, the exterior algebra $\Lambda(G)$ of differential forms, and the Poisson algebra of symbols on $G$ polynomial with respect to the momenta. A continuous left-invariant $qp$-quantizaton is constructed, giving rise to a one-to-one correspondence between symbols and differential operators on $G$. It is demonstrated that neither of the other two classical quantizations, namely, the $pq$ and Weyl quantizations, can be constructed on an infinite group $G$ if the same properties are to be retained.
@article{IM2_1995_59_2_a1,
     author = {S. S. Akbarov},
     title = {Differential geometry and quantization on a~locally compact group},
     journal = {Izvestiya. Mathematics },
     pages = {271--286},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a1/}
}
TY  - JOUR
AU  - S. S. Akbarov
TI  - Differential geometry and quantization on a~locally compact group
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 271
EP  - 286
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a1/
LA  - en
ID  - IM2_1995_59_2_a1
ER  - 
%0 Journal Article
%A S. S. Akbarov
%T Differential geometry and quantization on a~locally compact group
%J Izvestiya. Mathematics 
%D 1995
%P 271-286
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a1/
%G en
%F IM2_1995_59_2_a1
S. S. Akbarov. Differential geometry and quantization on a~locally compact group. Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 271-286. http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a1/

[1] Shereshevskii I. A., “Kvantovanie v kokasatelnykh rassloeniyakh”, DAN SSSR, 245:5 (1979), 120–123 | MR

[2] Shereshevski I. A., “Quantization and commutative superalgebras”, Lett. Math. Phys., 5:5 (1981), 429–435 | DOI | MR | Zbl

[3] Antonets M. A., Shereshevskii I. A., “Kvantovanie Veilya na kompaktnykh abelevykh gruppakh i kvantovaya mekhanika pochti-periodicheskikh sistem”, TMF, 48:1 (1981), 49–59 | MR | Zbl

[4] Bruhat F., “Distributions sur un groupe localement compact et applications a l'etude des representations des groupes $p$-adiques”, B. Soc. Math. France, 89:1 (1961), 43–75 | MR | Zbl

[5] Akbarov S. S., “Gladkaya struktura i differentsialnye operatory na lokalno kompaktnoi gruppe”, Izv. AN. Ser. matem., 59:1 (1995), 3–48 | MR | Zbl

[6] Khelemskii A. Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986 | MR

[7] Berezin F. A., “Kvantovanie”, Izv. AN SSSR, 38:5 (1974), 1116–1175 | MR | Zbl

[8] Khrennikov A. Yu., “Predstavleniya Shredingera i Bargmana–Foka v nearkhimedovoi kvantovoi mekhanike”, DAN SSSR, 313:2 (1990), 325–329 | MR | Zbl

[9] Khrennikov A. Yu., “$p$-Adic quantum mechanics with $p$-adic valued functions”, J. Math. Phys., 32:4 (1991), 932–937 | DOI | MR | Zbl

[10] Kheier Kh., Veroyatnostnye mery na lokalno kompaktnykh gruppakh, Mir, M., 1981 | MR

[11] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, t. 1, Nauka, M., 1975

[12] Moore C. C., “Groups with finite dimentional irreducible representation”, T. Am. Math. Soc., 166 (1972), 401–410 | DOI | MR | Zbl

[13] Shtern A. I., “Lokalno-bikompaktnye gruppy s konechnomernymi neprivodimymi predstavleniyami”, Matem. sb., 90:1 (1973), 86–95 | MR | Zbl

[14] Makki Dzh., “Ergodicheskie preobrazovaniya grupp s chisto diskretnym spektrom”, V kn.: Auslender L., Grin L., Khan F., Potoki na odnorodnykh prostranstvakh, Mir, M., 1966