Differential geometry and quantization on a~locally compact group
Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 271-286

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary locally compact group $G$, we describe the structure of the Lie algebra $\chi(G)$ of vector fields, the exterior algebra $\Lambda(G)$ of differential forms, and the Poisson algebra of symbols on $G$ polynomial with respect to the momenta. A continuous left-invariant $qp$-quantizaton is constructed, giving rise to a one-to-one correspondence between symbols and differential operators on $G$. It is demonstrated that neither of the other two classical quantizations, namely, the $pq$ and Weyl quantizations, can be constructed on an infinite group $G$ if the same properties are to be retained.
@article{IM2_1995_59_2_a1,
     author = {S. S. Akbarov},
     title = {Differential geometry and quantization on a~locally compact group},
     journal = {Izvestiya. Mathematics },
     pages = {271--286},
     publisher = {mathdoc},
     volume = {59},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a1/}
}
TY  - JOUR
AU  - S. S. Akbarov
TI  - Differential geometry and quantization on a~locally compact group
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 271
EP  - 286
VL  - 59
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a1/
LA  - en
ID  - IM2_1995_59_2_a1
ER  - 
%0 Journal Article
%A S. S. Akbarov
%T Differential geometry and quantization on a~locally compact group
%J Izvestiya. Mathematics 
%D 1995
%P 271-286
%V 59
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a1/
%G en
%F IM2_1995_59_2_a1
S. S. Akbarov. Differential geometry and quantization on a~locally compact group. Izvestiya. Mathematics , Tome 59 (1995) no. 2, pp. 271-286. http://geodesic.mathdoc.fr/item/IM2_1995_59_2_a1/