On the reconstruction of measures from their logarithmic derivatives
Izvestiya. Mathematics , Tome 59 (1995) no. 1, pp. 121-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions are given for functions of a given family to be the logarithmic derivatives of a probability measure.
@article{IM2_1995_59_1_a4,
     author = {A. I. Kirillov},
     title = {On the reconstruction of measures from their logarithmic derivatives},
     journal = {Izvestiya. Mathematics },
     pages = {121--139},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a4/}
}
TY  - JOUR
AU  - A. I. Kirillov
TI  - On the reconstruction of measures from their logarithmic derivatives
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 121
EP  - 139
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a4/
LA  - en
ID  - IM2_1995_59_1_a4
ER  - 
%0 Journal Article
%A A. I. Kirillov
%T On the reconstruction of measures from their logarithmic derivatives
%J Izvestiya. Mathematics 
%D 1995
%P 121-139
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a4/
%G en
%F IM2_1995_59_1_a4
A. I. Kirillov. On the reconstruction of measures from their logarithmic derivatives. Izvestiya. Mathematics , Tome 59 (1995) no. 1, pp. 121-139. http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a4/

[1] Averbukh V. I., Smolyanov O. G., Fomin S. V., “Obobschennye funktsii i differentsialnye uravneniya v lineinykh prostranstvakh. I: Differentsiruemye mery”, Tr. Mosk. matem. ob-va, 24 (1971), 133–174 | MR | Zbl

[2] Albeverio S., Rockner M., “Stochastic differential equations in infinite dimensions: solution via Dirichlet forms”, Prob. Th. Rel. Fields, 89:3 (1991), 347–386 | DOI | MR | Zbl

[3] Glimm Dzh., Dzhaffe A., Matematicheskie metody kvantovoi fiziki. Podkhod s ispolzovaniem funktsionalnykh integralov, Mir, M., 1984 | MR | Zbl

[4] Bogachev V. I., Smolyanov O. G., “Analiticheskie svoistva beskonechnomernykh raspredelenii”, UMN, 45:3 (1990), 3–83 | MR | Zbl

[5] Saimon B., Model $P(\varphi )_2$ evklidovoi kvantovoi teorii polya, Mir, M., 1976

[6] Kirillov A. I., “O dvukh matematicheskikh problemakh kanonicheskogo kvantovaniya. III: Stokhasticheskaya mekhanika vakuuma”, TMF, 91:3 (1991), 377–395 | MR

[7] Kirillov A. I., “O dvukh matematicheskikh problemakh kanonicheskogo kvantovaniya, IV”, TMF, 93:2 (1992), 249–263 | MR

[8] Kirillov A. I., “O zadanii mer na funktsionalnykh prostranstvakh s pomoschyu chislovykh plotnostei i kontinualnykh integralov”, Matem. zametki, 53:5 (1993), 152–155 | MR | Zbl

[9] Kirillov A. I., “Brounovskoe dvizhenie so snosom i ego primenenie v teorii integrirovaniya”, Teoriya veroyatn. i ee primen., 38:3 (1993), 629–634 | MR | Zbl

[10] Aronszajn N., “Differenyiability of Lipschitzian mappings between Banach spaces”, Studia Math., 57:2 (1976), 147–190 | MR | Zbl

[11] Billinglsi P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[12] Skorokhod A. V., Integrirovanie v gilbertovom prostranstve, Nauka, M., 1975

[13] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR | Zbl

[14] Fikhtengolts G. M., Kurs differentsialnogo i integralnogo ischisleniya, T. II, Fizmatgiz, M, 1962

[15] Kirillov A. I., “O dvukh matematicheskikh problemakh kanonicheskogo kvantovaniya, II”, TMF, 87:2 (1991), 163–172 | MR