On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in~$\mathbb R^{N+1}$
Izvestiya. Mathematics , Tome 59 (1995) no. 1, pp. 101-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of non-trivial solutions of the equation $-\Delta u=g(u)$ in $\mathbb R^{N+1}$, which are periodic with large periods in one variable and rapidly decreasing in others, is proved using variational methods. The non-existence of such solutions for small periods is shown as well.
@article{IM2_1995_59_1_a3,
     author = {Ya. Sh. Il'yasov},
     title = {On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in~$\mathbb R^{N+1}$},
     journal = {Izvestiya. Mathematics },
     pages = {101--119},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a3/}
}
TY  - JOUR
AU  - Ya. Sh. Il'yasov
TI  - On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in~$\mathbb R^{N+1}$
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 101
EP  - 119
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a3/
LA  - en
ID  - IM2_1995_59_1_a3
ER  - 
%0 Journal Article
%A Ya. Sh. Il'yasov
%T On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in~$\mathbb R^{N+1}$
%J Izvestiya. Mathematics 
%D 1995
%P 101-119
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a3/
%G en
%F IM2_1995_59_1_a3
Ya. Sh. Il'yasov. On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in~$\mathbb R^{N+1}$. Izvestiya. Mathematics , Tome 59 (1995) no. 1, pp. 101-119. http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a3/

[1] Alfimov G. L., Eleonsky V. M., Kulagin N. E., Lerman L. M., Silin V. P., “On existence of nontrivial solution for the equation $\Delta u-u+u^3=0$”, Phisica D, 44 (1990), 168–177 | DOI | MR | Zbl

[2] Kaptsov O. V., “Novye resheniya dvumernykh statsionarnykh uravnenii Eilera”, Prikl. matem. i mekh., 54:3 (1990), 409–416 | MR

[3] Mikhailovskii A. B., Kudashev V. R., Lakhin V. P., Mikhailovskaya L. A. i dr., “Tsepochki solitonov Rossbi i gradientnykh solitonov”, Pisma ZhETF, 40:7 (1984), 273–275

[4] Berestycki H., Lions P. L., “Nonlinear Scalar field equations. I: Existence of a Ground State”, Arch. Rat. Mech. Anal., 82 (4) (1983), 313–345 | MR | Zbl

[5] Pokhozhaev S. I., “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0$”, DAN SSSR, 165:1 (1965), 36–39 | MR | Zbl

[6] Lions Zh.-L., Mazhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[7] Lions Zh.-L., Neodnorodnye granichnye resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[8] Lieb E. H., “Existence and uniqueness of the minimizing solution of Shoquard's nonlinear equation”, Studies in Applied Math., 57 (1977), 93–105 | MR | Zbl

[9] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | MR | Zbl

[10] Brezis H., Kato T., “Remarks on the Schrödinger operator with singular complex potentials”, J. Math. Pures. Appl., 58 (1979), 137–151 | MR | Zbl

[11] Agmon S., Duglis A., Nirenberg L., Otsenki reshenii ellipticheskikh uravnenii vblizi granits v chastnykh proizvodnykh pri obschikh granichnykh usloviyakh, IL, M., 1962

[12] Naife A., Vvedenie v metody vozmuschenii, Mir, M., 1984 | MR