On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in~$\mathbb R^{N+1}$
Izvestiya. Mathematics , Tome 59 (1995) no. 1, pp. 101-119

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of non-trivial solutions of the equation $-\Delta u=g(u)$ in $\mathbb R^{N+1}$, which are periodic with large periods in one variable and rapidly decreasing in others, is proved using variational methods. The non-existence of such solutions for small periods is shown as well.
@article{IM2_1995_59_1_a3,
     author = {Ya. Sh. Il'yasov},
     title = {On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in~$\mathbb R^{N+1}$},
     journal = {Izvestiya. Mathematics },
     pages = {101--119},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a3/}
}
TY  - JOUR
AU  - Ya. Sh. Il'yasov
TI  - On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in~$\mathbb R^{N+1}$
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 101
EP  - 119
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a3/
LA  - en
ID  - IM2_1995_59_1_a3
ER  - 
%0 Journal Article
%A Ya. Sh. Il'yasov
%T On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in~$\mathbb R^{N+1}$
%J Izvestiya. Mathematics 
%D 1995
%P 101-119
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a3/
%G en
%F IM2_1995_59_1_a3
Ya. Sh. Il'yasov. On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in~$\mathbb R^{N+1}$. Izvestiya. Mathematics , Tome 59 (1995) no. 1, pp. 101-119. http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a3/