On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in~$\mathbb R^{N+1}$
Izvestiya. Mathematics , Tome 59 (1995) no. 1, pp. 101-119
Voir la notice de l'article provenant de la source Math-Net.Ru
The existence of non-trivial solutions of the equation $-\Delta u=g(u)$ in $\mathbb R^{N+1}$, which are periodic with large periods in one variable and rapidly decreasing in others, is proved using variational methods. The non-existence of such solutions for small periods is shown as well.
@article{IM2_1995_59_1_a3,
author = {Ya. Sh. Il'yasov},
title = {On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in~$\mathbb R^{N+1}$},
journal = {Izvestiya. Mathematics },
pages = {101--119},
publisher = {mathdoc},
volume = {59},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a3/}
}
Ya. Sh. Il'yasov. On periodic non-trivial solutions of the equation $-\Delta u=g(u)$ in~$\mathbb R^{N+1}$. Izvestiya. Mathematics , Tome 59 (1995) no. 1, pp. 101-119. http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a3/