Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics
Izvestiya. Mathematics , Tome 59 (1995) no. 1, pp. 63-100
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper new orbital invariants of integrable Hamiltonian systems with two degrees of freedom are described, considered on non-singular three-dimensional constant-energy surfaces. A classification up to orbit-preserving homeomorphisms is obtained for dynamical systems that describe the rotation of a rigid body around its centre of mass for various values of the parameters.
@article{IM2_1995_59_1_a2,
author = {A. V. Bolsinov and A. T. Fomenko},
title = {Orbital invariants of integrable {Hamiltonian} systems. {The} case of simple systems. {Orbital} classification of systems of {Euler} type in rigid body dynamics},
journal = {Izvestiya. Mathematics },
pages = {63--100},
publisher = {mathdoc},
volume = {59},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a2/}
}
TY - JOUR AU - A. V. Bolsinov AU - A. T. Fomenko TI - Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics JO - Izvestiya. Mathematics PY - 1995 SP - 63 EP - 100 VL - 59 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a2/ LA - en ID - IM2_1995_59_1_a2 ER -
%0 Journal Article %A A. V. Bolsinov %A A. T. Fomenko %T Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics %J Izvestiya. Mathematics %D 1995 %P 63-100 %V 59 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a2/ %G en %F IM2_1995_59_1_a2
A. V. Bolsinov; A. T. Fomenko. Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics. Izvestiya. Mathematics , Tome 59 (1995) no. 1, pp. 63-100. http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a2/