Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics
Izvestiya. Mathematics, Tome 59 (1995) no. 1, pp. 63-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper new orbital invariants of integrable Hamiltonian systems with two degrees of freedom are described, considered on non-singular three-dimensional constant-energy surfaces. A classification up to orbit-preserving homeomorphisms is obtained for dynamical systems that describe the rotation of a rigid body around its centre of mass for various values of the parameters.
@article{IM2_1995_59_1_a2,
     author = {A. V. Bolsinov and A. T. Fomenko},
     title = {Orbital invariants of integrable {Hamiltonian} systems. {The} case of simple systems. {Orbital} classification of systems of {Euler} type in rigid body dynamics},
     journal = {Izvestiya. Mathematics},
     pages = {63--100},
     year = {1995},
     volume = {59},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a2/}
}
TY  - JOUR
AU  - A. V. Bolsinov
AU  - A. T. Fomenko
TI  - Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics
JO  - Izvestiya. Mathematics
PY  - 1995
SP  - 63
EP  - 100
VL  - 59
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a2/
LA  - en
ID  - IM2_1995_59_1_a2
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%A A. T. Fomenko
%T Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics
%J Izvestiya. Mathematics
%D 1995
%P 63-100
%V 59
%N 1
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a2/
%G en
%F IM2_1995_59_1_a2
A. V. Bolsinov; A. T. Fomenko. Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics. Izvestiya. Mathematics, Tome 59 (1995) no. 1, pp. 63-100. http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a2/

[1] Anosov D. V., Aranson S. Kh., Bronshtein I. U., Grines V. Z., “Gladkie dinamicheskie sistemy, II”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, VINITI, M., 1985, 151–242 | MR | Zbl

[2] Fomenko A. T., “Topological classification of all Hamiltonian differential equations of general type with two degrees of freedom”, The Geometry of Hamiltonian Systems, Proceedings of a Workshop (June 5–16, 1989), Springer-Verlag, N.Y.–Berkeley, 1991, 131–339 | MR

[3] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | MR | Zbl

[4] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR | Zbl

[5] Peixoto M. M., “On the classification of flows on 2-manifolds”, Dynamical systems, Proc. Symp. Univ. of Bahia, Acad. Press, N.Y.–London, 1973, 389–419 | MR

[6] Umanskii Ya. L., “Skhema trekhmernoi dinamicheskoi sistemy Morsa–Smeila bez zamknutykh traektorii”, DAN SSSR, 230:6 (1976), 1286–1289 | MR | Zbl

[7] Bolsinov A. V., Fomenko A. T., “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii. I; II”, Matem. sb., 185:4 (1994), 27–80 ; 5, 27–78 | MR | Zbl | Zbl

[8] Nguen Ten Zung, “O svoistve obschego polozheniya prostykh bottovskikh integralov”, UMN, 45:4 (1990), 161–162 | MR

[9] Kalashnikov V. V. (ml.), “O tipichnosti bottovskikh integriruemykh gamiltonovykh sistem”, Matem. sb., 185:1 (1994), 107–120 | MR | Zbl

[10] Mozer Yu., Lektsii o gamiltonovykh sistemakh, Mir, M., 1973

[11] Nguyen Tien Zung, Contact $3$-manifolds. Integrable Hamiltonian systems, and exotic symplectic structures in $\mathbb R^4$, Preprint, August 1992, International Centre for Theoretical Physics, Miramare-Trieste

[12] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl

[13] Topological Classification of Integrable Systems, Advances in Soviet Mathematics, 6, ed. A. T. Fomenko, Amer. Math. Soc., 1991 | MR

[14] Bolsinov A. V., “Methods of calculation of the Fomenko–Zieschang invariant”, Advances in Soviet Mathematics, 6, AMS, 147–183 | MR

[15] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, Izd-vo MGU, M., 1980 | MR | Zbl

[16] Sadov Yu. A., “Peremennye deistvie-ugol v zadache Eilera–Puanso”, PMM, 34:5 (1970), 962–964 | Zbl

[17] Arkhangelskii Yu. A., Analiticheskaya dinamika tverdogo tela, Nauka, M., 1977 | MR

[18] Oshemkov A. A., “Methods of calculation of the Fomenko–Zieschang invariant”, Topological Classification of Integrable Systems, ed. A. T. Fomenko, Amer. Math. Soc., 1991, 67–146 | MR

[19] Eliasson L. H., “Normal forms for Hamiltonian systems with Poisson commeting integrals - elliptic case”, Comm. Math. Helv., 65:1 (1990), 4–35 | DOI | MR | Zbl