Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics
Izvestiya. Mathematics , Tome 59 (1995) no. 1, pp. 63-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper new orbital invariants of integrable Hamiltonian systems with two degrees of freedom are described, considered on non-singular three-dimensional constant-energy surfaces. A classification up to orbit-preserving homeomorphisms is obtained for dynamical systems that describe the rotation of a rigid body around its centre of mass for various values of the parameters.
@article{IM2_1995_59_1_a2,
     author = {A. V. Bolsinov and A. T. Fomenko},
     title = {Orbital invariants of integrable {Hamiltonian} systems. {The} case of simple systems. {Orbital} classification of systems of {Euler} type in rigid body dynamics},
     journal = {Izvestiya. Mathematics },
     pages = {63--100},
     publisher = {mathdoc},
     volume = {59},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a2/}
}
TY  - JOUR
AU  - A. V. Bolsinov
AU  - A. T. Fomenko
TI  - Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 63
EP  - 100
VL  - 59
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a2/
LA  - en
ID  - IM2_1995_59_1_a2
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%A A. T. Fomenko
%T Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics
%J Izvestiya. Mathematics 
%D 1995
%P 63-100
%V 59
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a2/
%G en
%F IM2_1995_59_1_a2
A. V. Bolsinov; A. T. Fomenko. Orbital invariants of integrable Hamiltonian systems. The case of simple systems. Orbital classification of systems of Euler type in rigid body dynamics. Izvestiya. Mathematics , Tome 59 (1995) no. 1, pp. 63-100. http://geodesic.mathdoc.fr/item/IM2_1995_59_1_a2/

[1] Anosov D. V., Aranson S. Kh., Bronshtein I. U., Grines V. Z., “Gladkie dinamicheskie sistemy, II”, Sovremennye problemy matematiki. Fundamentalnye napravleniya, 1, VINITI, M., 1985, 151–242 | MR | Zbl

[2] Fomenko A. T., “Topological classification of all Hamiltonian differential equations of general type with two degrees of freedom”, The Geometry of Hamiltonian Systems, Proceedings of a Workshop (June 5–16, 1989), Springer-Verlag, N.Y.–Berkeley, 1991, 131–339 | MR

[3] Fomenko A. T., Tsishang Kh., “Topologicheskii invariant i kriterii ekvivalentnosti integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody”, Izv. AN SSSR. Ser. matem., 54:3 (1990), 546–575 | MR | Zbl

[4] Bolsinov A. V., Matveev S. V., Fomenko A. T., “Topologicheskaya klassifikatsiya integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Spisok sistem maloi slozhnosti”, UMN, 45:2 (1990), 49–77 | MR | Zbl

[5] Peixoto M. M., “On the classification of flows on 2-manifolds”, Dynamical systems, Proc. Symp. Univ. of Bahia, Acad. Press, N.Y.–London, 1973, 389–419 | MR

[6] Umanskii Ya. L., “Skhema trekhmernoi dinamicheskoi sistemy Morsa–Smeila bez zamknutykh traektorii”, DAN SSSR, 230:6 (1976), 1286–1289 | MR | Zbl

[7] Bolsinov A. V., Fomenko A. T., “Traektornaya ekvivalentnost integriruemykh gamiltonovykh sistem s dvumya stepenyami svobody. Teorema klassifikatsii. I; II”, Matem. sb., 185:4 (1994), 27–80 ; 5, 27–78 | MR | Zbl | Zbl

[8] Nguen Ten Zung, “O svoistve obschego polozheniya prostykh bottovskikh integralov”, UMN, 45:4 (1990), 161–162 | MR

[9] Kalashnikov V. V. (ml.), “O tipichnosti bottovskikh integriruemykh gamiltonovykh sistem”, Matem. sb., 185:1 (1994), 107–120 | MR | Zbl

[10] Mozer Yu., Lektsii o gamiltonovykh sistemakh, Mir, M., 1973

[11] Nguyen Tien Zung, Contact $3$-manifolds. Integrable Hamiltonian systems, and exotic symplectic structures in $\mathbb R^4$, Preprint, August 1992, International Centre for Theoretical Physics, Miramare-Trieste

[12] Fomenko A. T., “Topologiya poverkhnostei postoyannoi energii integriruemykh gamiltonovykh sistem i prepyatstviya k integriruemosti”, Izv. AN SSSR. Ser. matem., 50:6 (1986), 1276–1307 | MR | Zbl

[13] Topological Classification of Integrable Systems, Advances in Soviet Mathematics, 6, ed. A. T. Fomenko, Amer. Math. Soc., 1991 | MR

[14] Bolsinov A. V., “Methods of calculation of the Fomenko–Zieschang invariant”, Advances in Soviet Mathematics, 6, AMS, 147–183 | MR

[15] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, Izd-vo MGU, M., 1980 | MR | Zbl

[16] Sadov Yu. A., “Peremennye deistvie-ugol v zadache Eilera–Puanso”, PMM, 34:5 (1970), 962–964 | Zbl

[17] Arkhangelskii Yu. A., Analiticheskaya dinamika tverdogo tela, Nauka, M., 1977 | MR

[18] Oshemkov A. A., “Methods of calculation of the Fomenko–Zieschang invariant”, Topological Classification of Integrable Systems, ed. A. T. Fomenko, Amer. Math. Soc., 1991, 67–146 | MR

[19] Eliasson L. H., “Normal forms for Hamiltonian systems with Poisson commeting integrals - elliptic case”, Comm. Math. Helv., 65:1 (1990), 4–35 | DOI | MR | Zbl