Nonharmonic Fourier series without the Riemann--Lebesgue property
Izvestiya. Mathematics , Tome 45 (1995) no. 3, pp. 545-557.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that in the class of separated sequences $\lambda_n$ there exists a sequence whose real parts decrease arbitrarily slowly to $-\infty$, so that for some continuous function $f$ on $[0,1]$ the general term of the nonharmonic Fourier series $f(t)\sim\sum c_ne^{\lambda_nt}$ diverges to infinity as $n=n_k\to\infty$ for all $t\in(0,1)$.
@article{IM2_1995_45_3_a5,
     author = {A. M. Sedletskii},
     title = {Nonharmonic {Fourier} series without the {Riemann--Lebesgue} property},
     journal = {Izvestiya. Mathematics },
     pages = {545--557},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a5/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Nonharmonic Fourier series without the Riemann--Lebesgue property
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 545
EP  - 557
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a5/
LA  - en
ID  - IM2_1995_45_3_a5
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Nonharmonic Fourier series without the Riemann--Lebesgue property
%J Izvestiya. Mathematics 
%D 1995
%P 545-557
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a5/
%G en
%F IM2_1995_45_3_a5
A. M. Sedletskii. Nonharmonic Fourier series without the Riemann--Lebesgue property. Izvestiya. Mathematics , Tome 45 (1995) no. 3, pp. 545-557. http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a5/

[1] N. Viner, R. Peli, Preobrazovanie Fure v kompleksnoi oblasti, Nauka, M., 1964 | MR

[2] A. M. Sedletskii, “Biortogonalnye razlozheniya funktsii v ryady eksponent na intervalakh veschestvennoi osi”, UMN, 37:5 (1982), 51–95 | MR

[3] V. A. Ilin, “Neobkhodimye i dostatochnye usloviya bazisnosti v $L_p$ i ravnoskhodimosti s trigonometricheskim ryadom spektralnykh razlozhenii i razlozheniei po sisteme eksponent”, DAN SSSR, 273:4 (1983), 789–793 | MR

[4] A. M. Sedletskii, “Ob odnom klasse biortogonalnykh razlozhenii po pokazatelnym funktsiyam”, Izv. AN SSSR. Ser. matem., 41:2 (1977), 393–415 | MR

[5] A. Zigmund, Trigonometricheskie ryady, v 2-kh t. T. 1. Trigonometricheskie ryady, Mir, M., 1965 | MR

[6] E. Seneta, Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl

[7] A. M. Sedletskii, “Izbytki sistem eksponentsialnykh funktsii”, Izv. AN SSSR. Ser. matem., 44:1 (1980), 203–218 | MR