On the theory of degenerate quadratic forms in the classical calculus of variations
Izvestiya. Mathematics , Tome 45 (1995) no. 3, pp. 433-476.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates the property of having definite sign for a quadratic form in the calculus of variations that does not satisfy the strong Legendre condition. New necessary conditions (the condition $\mathscr A$) of pointwise nature are obtained for the index of a form to be finite. Under the assumption of the strong condition $\mathscr A$ a formula is obtained for the index of a form.
@article{IM2_1995_45_3_a0,
     author = {A. V. Arutyunov},
     title = {On the theory of degenerate quadratic forms in the classical calculus of variations},
     journal = {Izvestiya. Mathematics },
     pages = {433--476},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
TI  - On the theory of degenerate quadratic forms in the classical calculus of variations
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 433
EP  - 476
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a0/
LA  - en
ID  - IM2_1995_45_3_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%T On the theory of degenerate quadratic forms in the classical calculus of variations
%J Izvestiya. Mathematics 
%D 1995
%P 433-476
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a0/
%G en
%F IM2_1995_45_3_a0
A. V. Arutyunov. On the theory of degenerate quadratic forms in the classical calculus of variations. Izvestiya. Mathematics , Tome 45 (1995) no. 3, pp. 433-476. http://geodesic.mathdoc.fr/item/IM2_1995_45_3_a0/

[1] I. M. Gelfand, S. V. Fomin, Variatsionnoe ischislenie, Nauka, M., 1961 | MR

[2] M. A. Lavrentev, L. A. Lyusternik, Osnovy variatsionnogo ischisleniya, t. 2, ONTI, M., 1935

[3] A. V. Dmitruk, “Ob uravneniyakh Eilera–Yakobi v variatsionnom ischislenii”, Matem. zametki, 20:6 (1976), 847–858 | MR | Zbl

[4] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[5] Dzh. Sansone, Obyknovennye differentsialnye uravneniya, t. 1, IL, M., 1953

[6] W. A. Coppel, “Linear-quadratic optimal control”, Proceed. of the Royal Soc. of Edinburgh Sect. A, 73 (1975), 271–289 | MR | Zbl

[7] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M, 1969 | MR

[8] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948

[9] M. R. Xestenes, “Application ofthe theory of quadratic forms in Hilbert spaces to the calculus of variations”, Pacific J. of Math., 1:4 (1951), 525–580 | MR

[10] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nauka, M., 1969 | MR | Zbl

[11] A. V. Arutyunov, “Znakoopredelennost kvadratichnykh form variatsionnogo ischisleniya so stepennym vyrozhdeniem”, Dokl. AN, 326:5 (1992), 759–764 | Zbl

[12] A. V. Arutyunov, “O vyrozhdennykh kvadratichnykh formakh variatsionnogo ischisleniya”, Dokl. AN, 333:3 (1993), 277–281 | MR | Zbl