Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1995_45_2_a3, author = {D. Yu. Radionov}, title = {On~the~Torelli and {Schottky} problems for {Prym} varietes}, journal = {Izvestiya. Mathematics }, pages = {297--314}, publisher = {mathdoc}, volume = {45}, number = {2}, year = {1995}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a3/} }
D. Yu. Radionov. On~the~Torelli and Schottky problems for Prym varietes. Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 297-314. http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a3/
[1] R. Donagi, “Big Schottky”, Invent. math., 89 (1987), 569–599 | DOI | MR | Zbl
[2] R. Donagi, “Non-Jacobians in the Schottky loci”, Ann. of Math., 126 (1987), 193–217 | DOI | MR | Zbl
[3] R. Donagi, The Schottky Problem, Preprint No 56, Max-Planck-Institute für Mathematik, Bonn, 1987
[4] R. Danagi, R. Smith, “The structure of the Prym map”, Acta Math., 146 (1981), 25–102 | DOI | MR
[5] D. Mumford, “Prym Varieties. I”, Contributions to Analysis, Acad. Press, N.Y., 1974, 325–350 | MR
[6] D. Mumford, Degenerations of Intermediate Jacobians, Lect. Notes Math., 997 | Zbl
[7] R. Numikawa, “A new compactification of Siegel space and degenerations of Abelian Varieties. I, II”, Math. Ann., 221 (1976), 97–142, 201–242 | DOI | MR
[8] G. E. Welters, “A characterisation of non-hyperelliptic Jacobi varieties”, Invent. math., 74 (1983), 437–440 | DOI | MR | Zbl