On the Torelli and Schottky problems for Prym varietes
Izvestiya. Mathematics, Tome 45 (1995) no. 2, pp. 297-314 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that the loci of tetragonal curves and Prymians yield irreducible components of the noninjectivity loci of the Prym map and theta map, respectively.
@article{IM2_1995_45_2_a3,
     author = {D. Yu. Radionov},
     title = {On~the~Torelli and {Schottky} problems for {Prym} varietes},
     journal = {Izvestiya. Mathematics},
     pages = {297--314},
     year = {1995},
     volume = {45},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a3/}
}
TY  - JOUR
AU  - D. Yu. Radionov
TI  - On the Torelli and Schottky problems for Prym varietes
JO  - Izvestiya. Mathematics
PY  - 1995
SP  - 297
EP  - 314
VL  - 45
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a3/
LA  - en
ID  - IM2_1995_45_2_a3
ER  - 
%0 Journal Article
%A D. Yu. Radionov
%T On the Torelli and Schottky problems for Prym varietes
%J Izvestiya. Mathematics
%D 1995
%P 297-314
%V 45
%N 2
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a3/
%G en
%F IM2_1995_45_2_a3
D. Yu. Radionov. On the Torelli and Schottky problems for Prym varietes. Izvestiya. Mathematics, Tome 45 (1995) no. 2, pp. 297-314. http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a3/

[1] R. Donagi, “Big Schottky”, Invent. math., 89 (1987), 569–599 | DOI | MR | Zbl

[2] R. Donagi, “Non-Jacobians in the Schottky loci”, Ann. of Math., 126 (1987), 193–217 | DOI | MR | Zbl

[3] R. Donagi, The Schottky Problem, Preprint No 56, Max-Planck-Institute für Mathematik, Bonn, 1987

[4] R. Danagi, R. Smith, “The structure of the Prym map”, Acta Math., 146 (1981), 25–102 | DOI | MR

[5] D. Mumford, “Prym Varieties. I”, Contributions to Analysis, Acad. Press, N.Y., 1974, 325–350 | MR

[6] D. Mumford, Degenerations of Intermediate Jacobians, Lect. Notes Math., 997 | Zbl

[7] R. Numikawa, “A new compactification of Siegel space and degenerations of Abelian Varieties. I, II”, Math. Ann., 221 (1976), 97–142, 201–242 | DOI | MR

[8] G. E. Welters, “A characterisation of non-hyperelliptic Jacobi varieties”, Invent. math., 74 (1983), 437–440 | DOI | MR | Zbl