On~the~Torelli and Schottky problems for Prym varietes
Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 297-314.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the loci of tetragonal curves and Prymians yield irreducible components of the noninjectivity loci of the Prym map and theta map, respectively.
@article{IM2_1995_45_2_a3,
     author = {D. Yu. Radionov},
     title = {On~the~Torelli and {Schottky} problems for {Prym} varietes},
     journal = {Izvestiya. Mathematics },
     pages = {297--314},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a3/}
}
TY  - JOUR
AU  - D. Yu. Radionov
TI  - On~the~Torelli and Schottky problems for Prym varietes
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 297
EP  - 314
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a3/
LA  - en
ID  - IM2_1995_45_2_a3
ER  - 
%0 Journal Article
%A D. Yu. Radionov
%T On~the~Torelli and Schottky problems for Prym varietes
%J Izvestiya. Mathematics 
%D 1995
%P 297-314
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a3/
%G en
%F IM2_1995_45_2_a3
D. Yu. Radionov. On~the~Torelli and Schottky problems for Prym varietes. Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 297-314. http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a3/

[1] R. Donagi, “Big Schottky”, Invent. math., 89 (1987), 569–599 | DOI | MR | Zbl

[2] R. Donagi, “Non-Jacobians in the Schottky loci”, Ann. of Math., 126 (1987), 193–217 | DOI | MR | Zbl

[3] R. Donagi, The Schottky Problem, Preprint No 56, Max-Planck-Institute für Mathematik, Bonn, 1987

[4] R. Danagi, R. Smith, “The structure of the Prym map”, Acta Math., 146 (1981), 25–102 | DOI | MR

[5] D. Mumford, “Prym Varieties. I”, Contributions to Analysis, Acad. Press, N.Y., 1974, 325–350 | MR

[6] D. Mumford, Degenerations of Intermediate Jacobians, Lect. Notes Math., 997 | Zbl

[7] R. Numikawa, “A new compactification of Siegel space and degenerations of Abelian Varieties. I, II”, Math. Ann., 221 (1976), 97–142, 201–242 | DOI | MR

[8] G. E. Welters, “A characterisation of non-hyperelliptic Jacobi varieties”, Invent. math., 74 (1983), 437–440 | DOI | MR | Zbl