@article{IM2_1995_45_2_a3,
author = {D. Yu. Radionov},
title = {On~the~Torelli and {Schottky} problems for {Prym} varietes},
journal = {Izvestiya. Mathematics},
pages = {297--314},
year = {1995},
volume = {45},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a3/}
}
D. Yu. Radionov. On the Torelli and Schottky problems for Prym varietes. Izvestiya. Mathematics, Tome 45 (1995) no. 2, pp. 297-314. http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a3/
[1] R. Donagi, “Big Schottky”, Invent. math., 89 (1987), 569–599 | DOI | MR | Zbl
[2] R. Donagi, “Non-Jacobians in the Schottky loci”, Ann. of Math., 126 (1987), 193–217 | DOI | MR | Zbl
[3] R. Donagi, The Schottky Problem, Preprint No 56, Max-Planck-Institute für Mathematik, Bonn, 1987
[4] R. Danagi, R. Smith, “The structure of the Prym map”, Acta Math., 146 (1981), 25–102 | DOI | MR
[5] D. Mumford, “Prym Varieties. I”, Contributions to Analysis, Acad. Press, N.Y., 1974, 325–350 | MR
[6] D. Mumford, Degenerations of Intermediate Jacobians, Lect. Notes Math., 997 | Zbl
[7] R. Numikawa, “A new compactification of Siegel space and degenerations of Abelian Varieties. I, II”, Math. Ann., 221 (1976), 97–142, 201–242 | DOI | MR
[8] G. E. Welters, “A characterisation of non-hyperelliptic Jacobi varieties”, Invent. math., 74 (1983), 437–440 | DOI | MR | Zbl