Approximate functional equation for the~product of two Dirichlet $L$-functions
Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 255-280

Voir la notice de l'article provenant de la source Math-Net.Ru

An approximate functional is derived for $L(s,\chi_1)L(s,\chi_2)$, where $\chi_1$ and $\chi_2$ are primitive Dirichlet characters modulo $k_1$ and $k_2$, and also an approximate functional equation for an analogue of the Hardy–Selberg function. If $s=1/2+it$, $k_1k_2\leqslant |t|^{1/9 -5\varepsilon}$, then the remainder terms in these formulas are bounded by $O(|t|^{-\varepsilon})$ as $|t|\to\infty$ (where $\varepsilon$ is an arbitrarily small positive number).
@article{IM2_1995_45_2_a1,
     author = {S. A. Gritsenko},
     title = {Approximate functional equation for the~product of two {Dirichlet} $L$-functions},
     journal = {Izvestiya. Mathematics },
     pages = {255--280},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a1/}
}
TY  - JOUR
AU  - S. A. Gritsenko
TI  - Approximate functional equation for the~product of two Dirichlet $L$-functions
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 255
EP  - 280
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a1/
LA  - en
ID  - IM2_1995_45_2_a1
ER  - 
%0 Journal Article
%A S. A. Gritsenko
%T Approximate functional equation for the~product of two Dirichlet $L$-functions
%J Izvestiya. Mathematics 
%D 1995
%P 255-280
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a1/
%G en
%F IM2_1995_45_2_a1
S. A. Gritsenko. Approximate functional equation for the~product of two Dirichlet $L$-functions. Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 255-280. http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a1/