Approximate functional equation for the~product of two Dirichlet $L$-functions
Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 255-280.

Voir la notice de l'article provenant de la source Math-Net.Ru

An approximate functional is derived for $L(s,\chi_1)L(s,\chi_2)$, where $\chi_1$ and $\chi_2$ are primitive Dirichlet characters modulo $k_1$ and $k_2$, and also an approximate functional equation for an analogue of the Hardy–Selberg function. If $s=1/2+it$, $k_1k_2\leqslant |t|^{1/9 -5\varepsilon}$, then the remainder terms in these formulas are bounded by $O(|t|^{-\varepsilon})$ as $|t|\to\infty$ (where $\varepsilon$ is an arbitrarily small positive number).
@article{IM2_1995_45_2_a1,
     author = {S. A. Gritsenko},
     title = {Approximate functional equation for the~product of two {Dirichlet} $L$-functions},
     journal = {Izvestiya. Mathematics },
     pages = {255--280},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a1/}
}
TY  - JOUR
AU  - S. A. Gritsenko
TI  - Approximate functional equation for the~product of two Dirichlet $L$-functions
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 255
EP  - 280
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a1/
LA  - en
ID  - IM2_1995_45_2_a1
ER  - 
%0 Journal Article
%A S. A. Gritsenko
%T Approximate functional equation for the~product of two Dirichlet $L$-functions
%J Izvestiya. Mathematics 
%D 1995
%P 255-280
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a1/
%G en
%F IM2_1995_45_2_a1
S. A. Gritsenko. Approximate functional equation for the~product of two Dirichlet $L$-functions. Izvestiya. Mathematics , Tome 45 (1995) no. 2, pp. 255-280. http://geodesic.mathdoc.fr/item/IM2_1995_45_2_a1/

[1] G. H. Hardy, J. E. Littlewood, “The approximate functional equation for $\zeta(s)$ and $\zeta^2(s)$”, Proc. Lond. Math. Soc., 29 (1929), 81–97 | DOI | Zbl

[2] E. C. Titchmarsh, “The approximate functional equation for $\zeta^2(s)$”, Quart. J. Math., 9 (1938), 109–114 | DOI | Zbl

[3] A. O. Gelfond, “O nekotorykh funktsionalnykh uravneniyakh, yavlyayuschikhsya sledstviem uravnenii tipa Rimana”, Izv. AN SSSR. Ser. matem., 24:4 (1960), 469–474 | MR

[4] A. F. Lavrik, “Priblizhennye funktsionalnye uravneniya funktsii Dirikhle”, Izv. AN SSSR. Ser. matem., 32:1 (1968), 134–185 | MR | Zbl

[5] Y. Motohashi, Lectures on the Riemann–Siegel formula, Ulam Seminar, Department of Mathematics, Spring Semester, Colorado University, Boulder, 1987

[6] A. A. Karatsuba, “O nulyakh funktsii $\zeta(s)$ na korotkikh promezhutkakh kriticheskoi pryamoi”, Izv. AN SSSR. Ser. matem., 48:3 (1984), 569–584 | MR | Zbl

[7] A. A. Karatsuba, “O nulyakh spetsialnogo vida funktsii, svyazannykh s ryadami Dirikhle”, Izv. AN SSSR. Ser. matem., 55:3 (1991), 483–514 | MR

[8] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR

[9] E. K. Titchmarsh, Teoriya dzeta-funktsii Rimana, IL, M., 1953

[10] K. Khooli, Metody resheta v teorii chisel, Nauka, M., 1987 | MR

[11] I. M. Vinogradov, Osobye varianty metoda trigonometricheskikh summ, Nauka, M., 1976 | MR

[12] K. Buriev, Additivnye zadachi s prostymi chislami, Dis. ... kand. fiz.-matem. nauk, Izd-vo MGU, M., 1989