A~geometric realization of~$C$-groups
Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 197-206

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that for each $C$-group $G$ and each $n\geqslant 2$ there exists an $n$-dimensional compact orientable manifold without boundary $X_n\subset S^{n+2}$ such that $\pi_1(S^{n+2}\setminus X_n)\simeq G$. Furthermore, the well-known representation of Riemann surfaces ($(n=2)$) as a union of finitely many copies of the Riemann sphere with slits glued together is generalized to the $n$-dimensional case.
@article{IM2_1995_45_1_a9,
     author = {Vik. S. Kulikov},
     title = {A~geometric realization of~$C$-groups},
     journal = {Izvestiya. Mathematics },
     pages = {197--206},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a9/}
}
TY  - JOUR
AU  - Vik. S. Kulikov
TI  - A~geometric realization of~$C$-groups
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 197
EP  - 206
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a9/
LA  - en
ID  - IM2_1995_45_1_a9
ER  - 
%0 Journal Article
%A Vik. S. Kulikov
%T A~geometric realization of~$C$-groups
%J Izvestiya. Mathematics 
%D 1995
%P 197-206
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a9/
%G en
%F IM2_1995_45_1_a9
Vik. S. Kulikov. A~geometric realization of~$C$-groups. Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 197-206. http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a9/