Nonconstructive proofs of the Beurling–Malliavin theorem on the radius of completeness, and nonuniqueness theorems for entire functions
Izvestiya. Mathematics, Tome 45 (1995) no. 1, pp. 125-149 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two new methods for proving the Beurling–Malliavin theorem on the radius of completeness are given. Development of the first method allows one to obtain new sufficient conditions for a sequence $\Lambda=\{\lambda_n\}\subset\mathbf C$ to be a set of nonuniqueness for a wide class of weighted spaces of entire functions, and development of the second gives conditions for this property to be preserved under small displacements of the points $\lambda_n$.
@article{IM2_1995_45_1_a5,
     author = {B. N. Khabibullin},
     title = {Nonconstructive proofs of the {Beurling{\textendash}Malliavin} theorem on the radius of completeness, and nonuniqueness theorems for entire functions},
     journal = {Izvestiya. Mathematics},
     pages = {125--149},
     year = {1995},
     volume = {45},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a5/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Nonconstructive proofs of the Beurling–Malliavin theorem on the radius of completeness, and nonuniqueness theorems for entire functions
JO  - Izvestiya. Mathematics
PY  - 1995
SP  - 125
EP  - 149
VL  - 45
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a5/
LA  - en
ID  - IM2_1995_45_1_a5
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Nonconstructive proofs of the Beurling–Malliavin theorem on the radius of completeness, and nonuniqueness theorems for entire functions
%J Izvestiya. Mathematics
%D 1995
%P 125-149
%V 45
%N 1
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a5/
%G en
%F IM2_1995_45_1_a5
B. N. Khabibullin. Nonconstructive proofs of the Beurling–Malliavin theorem on the radius of completeness, and nonuniqueness theorems for entire functions. Izvestiya. Mathematics, Tome 45 (1995) no. 1, pp. 125-149. http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a5/

[1] A. Beurling, P. Malliavin, “On the closure of characters and the zeros of entire functions”, Acta Math., 118:1–4 (1967), 79–93 | DOI | MR | Zbl

[2] J.-P. Kahane, “Travaux de Berling et Malliavin”, Seminaire Bourbaki (14-e annee), 1961–1962, Expose No 225

[3] R. Redheffer, “Two consequenses of the Beurling–Malliavin theory”, Proc. Amer. Math. Soc., 36:1 (1972), 116–122 | DOI | MR | Zbl

[4] R. Redheffer, “Completeness of sets of complex exponentials”, Adv. in Math., 24 (1977), 1–62 | DOI | MR | Zbl

[5] I. F. Krasichkov-Ternovskii, “Interpretatsiya teoremy Bërlinga–Malyavena o radiuse polnoty”, Matem. sb., 180:3 (1989), 397–423 | MR

[6] P. Koosis, “Sur la totalite des systems d'exponentielles imaginaires”, C.r. Acad. sci. Paris, 250 (1960), 2102–2103 | MR | Zbl

[7] J. Korevaar, “Zero Distribution of entire functions and spanning radius for a set of complex exponentials”, Aspects of contemporary Complex Analysis, Academic Press, L.–N.Y., 1980, 293–312 | MR

[8] A. Beurling, P. Malliavin, “On Fourier transforms of measures with compact support”, Acta Math., 107:3–4 (1962), 291–309 | DOI | MR | Zbl

[9] B. N. Khabibullin, “Mnozhestva edinstvennosti v prostranstvakh tselykh funktsii odnoi peremennoi”, Izv. AN SSSR. Ser. matem., 55:5 (1991), 1101–1123 | MR

[10] C. A. Berenstein, B. A. Taylor, “A new look at interpolation theory for entire functions of one variable”, Adv. in Math., 33 (1979), 109–143 | DOI | MR | Zbl

[11] W. A. Squires, “Necessary conditions for universal interpolation in $\widehat{\mathscr E}'$”, Can. J. Math., 33:6 (1981), 1356–1364 | MR

[12] A. A. Goldberg, B. Ya. Levin, I. V. Ostrovskii, “Tselye i meromorfnye funktsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 85, VINITI, M., 1991, 5–185 | MR

[13] L. Hörmander, “Generators for some rings of analytic functions”, Bull. Amer. Math. Soc., 73:6 (1967), 943–949 | DOI | MR | Zbl

[14] U. Kheiman, P. Kennedi, Subgarmonicheskie funktsii, Mir, M., 1980

[15] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[16] P. Koosis, “La plus petite majorante surharmonique et son rapport aves l'existece des fonctions entieres de type exponentiel jouant role de multiplicateurs”, Ann. Inst. Fourier, 33:1 (1983), 67–107 | MR | Zbl

[17] V. V. Napalkov, Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[18] R. S. Yulmukhametov, “Prostranstva analiticheskikh funktsii, imeyuschikh zadannyi rost vblizi granitsy”, Matem. zametki, 32:1 (1982), 41–57 | MR | Zbl

[19] R. S. Yulmukhametov, “Kvazianaliticheskie klassy funktsii v vypuklykh oblastyakh”, Matem. sb., 130:4 (1986), 500–519 | MR | Zbl

[20] V. V. Napalkov, “Prostranstva analiticheskikh funktsii zadannogo rosta vblizi granitsy”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 287–305 | MR | Zbl

[21] S. V. Popenov, “O vesovom prostranstve funktsii, analiticheskikh v neogranichennoi vypukloi oblasti v $\mathbf C^m$”, Matem. zametki, 40:3 (1986), 374–384 | MR | Zbl

[22] M. M. Mannanov, “Opisanie odnogo klassa analiticheskikh funktsionalov”, Sib. matem. zhurn., 31:3 (1990), 62–72 | MR | Zbl

[23] L. I. Ronkin, Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, Nauka, M., 1971 | MR | Zbl

[24] I. F. Krasichkov, “Sravnenie tselykh funktsii konechnogo poryadka po raspredeleniyam ikh kornei”, Matem. sb., 71:3 (1966), 405–419 | Zbl

[25] P. Koosis, The logarithmic integral, I, II, Cambridge University Press, Cambridge, 1988, 1992 | MR | Zbl