Nonconstructive proofs of the Beurling--Malliavin theorem on the radius of completeness, and nonuniqueness theorems for entire functions
Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 125-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two new methods for proving the Beurling–Malliavin theorem on the radius of completeness are given. Development of the first method allows one to obtain new sufficient conditions for a sequence $\Lambda=\{\lambda_n\}\subset\mathbf C$ to be a set of nonuniqueness for a wide class of weighted spaces of entire functions, and development of the second gives conditions for this property to be preserved under small displacements of the points $\lambda_n$.
@article{IM2_1995_45_1_a5,
     author = {B. N. Khabibullin},
     title = {Nonconstructive proofs of the {Beurling--Malliavin} theorem on the radius of completeness, and nonuniqueness theorems for entire functions},
     journal = {Izvestiya. Mathematics },
     pages = {125--149},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a5/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Nonconstructive proofs of the Beurling--Malliavin theorem on the radius of completeness, and nonuniqueness theorems for entire functions
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 125
EP  - 149
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a5/
LA  - en
ID  - IM2_1995_45_1_a5
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Nonconstructive proofs of the Beurling--Malliavin theorem on the radius of completeness, and nonuniqueness theorems for entire functions
%J Izvestiya. Mathematics 
%D 1995
%P 125-149
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a5/
%G en
%F IM2_1995_45_1_a5
B. N. Khabibullin. Nonconstructive proofs of the Beurling--Malliavin theorem on the radius of completeness, and nonuniqueness theorems for entire functions. Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 125-149. http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a5/

[1] A. Beurling, P. Malliavin, “On the closure of characters and the zeros of entire functions”, Acta Math., 118:1–4 (1967), 79–93 | DOI | MR | Zbl

[2] J.-P. Kahane, “Travaux de Berling et Malliavin”, Seminaire Bourbaki (14-e annee), 1961–1962, Expose No 225

[3] R. Redheffer, “Two consequenses of the Beurling–Malliavin theory”, Proc. Amer. Math. Soc., 36:1 (1972), 116–122 | DOI | MR | Zbl

[4] R. Redheffer, “Completeness of sets of complex exponentials”, Adv. in Math., 24 (1977), 1–62 | DOI | MR | Zbl

[5] I. F. Krasichkov-Ternovskii, “Interpretatsiya teoremy Bërlinga–Malyavena o radiuse polnoty”, Matem. sb., 180:3 (1989), 397–423 | MR

[6] P. Koosis, “Sur la totalite des systems d'exponentielles imaginaires”, C.r. Acad. sci. Paris, 250 (1960), 2102–2103 | MR | Zbl

[7] J. Korevaar, “Zero Distribution of entire functions and spanning radius for a set of complex exponentials”, Aspects of contemporary Complex Analysis, Academic Press, L.–N.Y., 1980, 293–312 | MR

[8] A. Beurling, P. Malliavin, “On Fourier transforms of measures with compact support”, Acta Math., 107:3–4 (1962), 291–309 | DOI | MR | Zbl

[9] B. N. Khabibullin, “Mnozhestva edinstvennosti v prostranstvakh tselykh funktsii odnoi peremennoi”, Izv. AN SSSR. Ser. matem., 55:5 (1991), 1101–1123 | MR

[10] C. A. Berenstein, B. A. Taylor, “A new look at interpolation theory for entire functions of one variable”, Adv. in Math., 33 (1979), 109–143 | DOI | MR | Zbl

[11] W. A. Squires, “Necessary conditions for universal interpolation in $\widehat{\mathscr E}'$”, Can. J. Math., 33:6 (1981), 1356–1364 | MR

[12] A. A. Goldberg, B. Ya. Levin, I. V. Ostrovskii, “Tselye i meromorfnye funktsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 85, VINITI, M., 1991, 5–185 | MR

[13] L. Hörmander, “Generators for some rings of analytic functions”, Bull. Amer. Math. Soc., 73:6 (1967), 943–949 | DOI | MR | Zbl

[14] U. Kheiman, P. Kennedi, Subgarmonicheskie funktsii, Mir, M., 1980

[15] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[16] P. Koosis, “La plus petite majorante surharmonique et son rapport aves l'existece des fonctions entieres de type exponentiel jouant role de multiplicateurs”, Ann. Inst. Fourier, 33:1 (1983), 67–107 | MR | Zbl

[17] V. V. Napalkov, Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[18] R. S. Yulmukhametov, “Prostranstva analiticheskikh funktsii, imeyuschikh zadannyi rost vblizi granitsy”, Matem. zametki, 32:1 (1982), 41–57 | MR | Zbl

[19] R. S. Yulmukhametov, “Kvazianaliticheskie klassy funktsii v vypuklykh oblastyakh”, Matem. sb., 130:4 (1986), 500–519 | MR | Zbl

[20] V. V. Napalkov, “Prostranstva analiticheskikh funktsii zadannogo rosta vblizi granitsy”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 287–305 | MR | Zbl

[21] S. V. Popenov, “O vesovom prostranstve funktsii, analiticheskikh v neogranichennoi vypukloi oblasti v $\mathbf C^m$”, Matem. zametki, 40:3 (1986), 374–384 | MR | Zbl

[22] M. M. Mannanov, “Opisanie odnogo klassa analiticheskikh funktsionalov”, Sib. matem. zhurn., 31:3 (1990), 62–72 | MR | Zbl

[23] L. I. Ronkin, Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, Nauka, M., 1971 | MR | Zbl

[24] I. F. Krasichkov, “Sravnenie tselykh funktsii konechnogo poryadka po raspredeleniyam ikh kornei”, Matem. sb., 71:3 (1966), 405–419 | Zbl

[25] P. Koosis, The logarithmic integral, I, II, Cambridge University Press, Cambridge, 1988, 1992 | MR | Zbl