Nonconstructive proofs of the Beurling--Malliavin theorem on the radius of completeness, and nonuniqueness theorems for entire functions
Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 125-149

Voir la notice de l'article provenant de la source Math-Net.Ru

Two new methods for proving the Beurling–Malliavin theorem on the radius of completeness are given. Development of the first method allows one to obtain new sufficient conditions for a sequence $\Lambda=\{\lambda_n\}\subset\mathbf C$ to be a set of nonuniqueness for a wide class of weighted spaces of entire functions, and development of the second gives conditions for this property to be preserved under small displacements of the points $\lambda_n$.
@article{IM2_1995_45_1_a5,
     author = {B. N. Khabibullin},
     title = {Nonconstructive proofs of the {Beurling--Malliavin} theorem on the radius of completeness, and nonuniqueness theorems for entire functions},
     journal = {Izvestiya. Mathematics },
     pages = {125--149},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a5/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Nonconstructive proofs of the Beurling--Malliavin theorem on the radius of completeness, and nonuniqueness theorems for entire functions
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 125
EP  - 149
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a5/
LA  - en
ID  - IM2_1995_45_1_a5
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Nonconstructive proofs of the Beurling--Malliavin theorem on the radius of completeness, and nonuniqueness theorems for entire functions
%J Izvestiya. Mathematics 
%D 1995
%P 125-149
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a5/
%G en
%F IM2_1995_45_1_a5
B. N. Khabibullin. Nonconstructive proofs of the Beurling--Malliavin theorem on the radius of completeness, and nonuniqueness theorems for entire functions. Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 125-149. http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a5/