On~non-almost-periodicity of solutions of the Sobolev problem in domains with edges
Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 97-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of spectral properties of the Sobolev problem on small oscillations of a rotating fluid in domains containing edges, and perhaps conical points. A new method is proposed for investigating “the Dirichlet problem” for a hyperbolic equation in domains with angles. The method is used to get concrete examples of three-dimensional domains for which there exist non-almost-periodic solutions of the Sobolev problem with a Dirichlet boundary condition, and to determine concrete intervals of the purely continuous spectrum of this problem.
@article{IM2_1995_45_1_a4,
     author = {S. D. Troitskaya},
     title = {On~non-almost-periodicity of solutions of the {Sobolev} problem in domains with edges},
     journal = {Izvestiya. Mathematics },
     pages = {97--124},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a4/}
}
TY  - JOUR
AU  - S. D. Troitskaya
TI  - On~non-almost-periodicity of solutions of the Sobolev problem in domains with edges
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 97
EP  - 124
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a4/
LA  - en
ID  - IM2_1995_45_1_a4
ER  - 
%0 Journal Article
%A S. D. Troitskaya
%T On~non-almost-periodicity of solutions of the Sobolev problem in domains with edges
%J Izvestiya. Mathematics 
%D 1995
%P 97-124
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a4/
%G en
%F IM2_1995_45_1_a4
S. D. Troitskaya. On~non-almost-periodicity of solutions of the Sobolev problem in domains with edges. Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 97-124. http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a4/

[1] S. L. Sobolev, “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 3–50 | MR | Zbl

[2] T. I. Zelenyak, Izbrannye voprosy kachestvennoi teorii uravnenii s chastnymi proizvodnymi, Izd-vo NGU, Novosibirsk, 1970

[3] V. N. Maslennikova, A. I. Giniatullin, “Spektralnye svoistva operatorov dlya sistem gidrodinamiki vraschayuscheisya zhidkosti i needinstvennost predelnoi amplitudy”, Sib. matem. zhurnal, 29:5 (1988), 151–171 | MR

[4] J. V. Ralston, “On stationary models in inviscid rotating fluids”, J. of Math. Anal. and Appl., 44:2 (1973), 366–383 | DOI | MR | Zbl

[5] John Fritz, “The Dirichlet problem for a hyperbolic equation”, Amer. Journal of Math., 63:1 (1941), 141–154 | DOI | MR | Zbl

[6] P. G. Bourgin, R. Duffin, “The Dirichlet problem for the vibrating string equation”, Bull. of the American Math. Soc., 45:12, part 1 (1939), 851–859 | DOI | MR

[7] Yu. M. Berezanskii, “O zadache tipa Dirikhle dlya uravneniya kolebaniya struny”, Ukr. matem. zhurnal, 12:4 (1960), 363–372 | MR

[8] R. A. Aleksandryan, K voprosu o zavisimosti pochti periodichnosti reshenii differentsialnykh uravnenii ot vida oblasti, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1949

[9] R. A. Aleksandryan, “Spektralnye svoistva operatorov, porozhdennykh sistemami differentsialnykh uravnenii tipa S. L. Soboleva”, Tr. Mosk. matem. o-va, 9, 1960, 455–505 | Zbl

[10] T. I. Zelenyak, B. V. Kapitonov, V. V. Skazka, M. V. Fokin, O probleme S. L. Soboleva v teorii malykh kolebanii vraschayuscheisya zhidkosti, Preprint No 471, VTs SO AN SSSR, Novosibirsk, 1983

[11] R. A. Aleksandryan, Yu. M. Berezanskii, V. A. Ilin, A. G. Kostyuchenko, “Nekotorye voprosy spektralnoi teorii dlya uravnenii s chastnymi proizvodnymi”, Trudy simpoziuma, posvyaschennogo 60-letiyu akad. S. L. Soboleva, Nauka, M., 1970, 3–35

[12] R. Denchev, “O spektre odnogo operatora”, DAN SSSR, 126:2 (1959), 259–262 | Zbl

[13] M. V. Fokin, “O spektre odnogo operatora”, Dinamika sploshnoi sredy, 16, Novosibirsk, 1974, 107–111 | MR

[14] S. D. Troitskaya, “O zavisimosti spektra zadachi S. L. Soboleva ot geometrii oblasti”, Izbrannye voprosy algebry, geometrii i diskretnoi matematiki, MGU, M., 1992, 138–147

[15] S. D. Troitskaya, “O spektre odnoi zadachi S. L. Soboleva”, Uspekhi matem. nauk, 47:5 (1992), 191–192 | MR | Zbl

[16] S. D. Troitskaya, Nekotorye spektralnye svoistva zadachi o malykh kolebaniyakh vraschayuscheisya zhidkosti, Dis. ... kand. fiz.-matem. nauk, MGU, M., 1992

[17] A. M. Gomilko, “O nepreryvnom spektre odnoi zadachi gidromekhaniki”, Uspekhi matem. nauk, 36:5 (1981), 169–170 | MR | Zbl

[18] S. L. Sobolev, Uravneniya matematicheskoi fiziki, Nauka, M., 1966 | MR

[19] A. A. Lyashenko, “O ne pochti periodichnosti resheniya uravneniya S. L. Soboleva”, DAN SSSR, 278:4 (1984), 803–806 | MR | Zbl

[20] X. Grinspen, Teoriya vraschayuschikhsya zhidkostei, Gidrometeoizdat, L., 1975

[21] A. V. Bitsadze, Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR