On~non-almost-periodicity of solutions of the Sobolev problem in domains with edges
Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 97-124

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the study of spectral properties of the Sobolev problem on small oscillations of a rotating fluid in domains containing edges, and perhaps conical points. A new method is proposed for investigating “the Dirichlet problem” for a hyperbolic equation in domains with angles. The method is used to get concrete examples of three-dimensional domains for which there exist non-almost-periodic solutions of the Sobolev problem with a Dirichlet boundary condition, and to determine concrete intervals of the purely continuous spectrum of this problem.
@article{IM2_1995_45_1_a4,
     author = {S. D. Troitskaya},
     title = {On~non-almost-periodicity of solutions of the {Sobolev} problem in domains with edges},
     journal = {Izvestiya. Mathematics },
     pages = {97--124},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a4/}
}
TY  - JOUR
AU  - S. D. Troitskaya
TI  - On~non-almost-periodicity of solutions of the Sobolev problem in domains with edges
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 97
EP  - 124
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a4/
LA  - en
ID  - IM2_1995_45_1_a4
ER  - 
%0 Journal Article
%A S. D. Troitskaya
%T On~non-almost-periodicity of solutions of the Sobolev problem in domains with edges
%J Izvestiya. Mathematics 
%D 1995
%P 97-124
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a4/
%G en
%F IM2_1995_45_1_a4
S. D. Troitskaya. On~non-almost-periodicity of solutions of the Sobolev problem in domains with edges. Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 97-124. http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a4/