Spectral analysis of perturbed nonquasianalytic and spectral operators
Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 1-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theorems on similarity of perturbed nonquasianalitic (in the sense of Yu. I. Lyubich and V. I. Matsaev) and spectral (in the sense of Dunford) linear operators with countable partition of their spectra to operators of block-diagonal form are obtained. On the basis of such theorems estimates of spectra and projections are obtained, and the convergence of spectral decompositions of perturbed operators is studied. The results presented in the paper on the (generalized) spectral property of operators substantially strengthen the corresponding results of J. T. Schwartz and H. P. Kramer (see Dunford and Schwartz, Linear operators, vol. III, Chapter XIX).
@article{IM2_1995_45_1_a0,
     author = {A. G. Baskakov},
     title = {Spectral analysis of perturbed nonquasianalytic and spectral operators},
     journal = {Izvestiya. Mathematics },
     pages = {1--31},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a0/}
}
TY  - JOUR
AU  - A. G. Baskakov
TI  - Spectral analysis of perturbed nonquasianalytic and spectral operators
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 1
EP  - 31
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a0/
LA  - en
ID  - IM2_1995_45_1_a0
ER  - 
%0 Journal Article
%A A. G. Baskakov
%T Spectral analysis of perturbed nonquasianalytic and spectral operators
%J Izvestiya. Mathematics 
%D 1995
%P 1-31
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a0/
%G en
%F IM2_1995_45_1_a0
A. G. Baskakov. Spectral analysis of perturbed nonquasianalytic and spectral operators. Izvestiya. Mathematics , Tome 45 (1995) no. 1, pp. 1-31. http://geodesic.mathdoc.fr/item/IM2_1995_45_1_a0/

[1] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | Zbl

[2] N. Danford, Dzh. T. Shvarts, Lineinye operatory, t. III, Mir, M., 1974

[3] V. E. Katsnelson, “Ob usloviyakh bazisnosti sistemy kornevykh vektorov nekotorykh klassov operatorov”, Funkts. analiz, 1:2 (1967), 39–51 | MR

[4] V. E. Katsnelson, O skhodimosti i summiruemosti ryadov po kornevym vektoram nekotorykh klassov nesamosopryazhennykh operatorov, Dis. ... kand. fiz.-matem. nauk, Kharkov, 1967

[5] B. Sekefalvi-Nad, Ch. Foiash, Garmonicheskii analiz operatorov v gilbertovom prostranstve, Mir, M., 1970 | MR

[6] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[7] Yu. A. Mitropolskii, Metod usredneniya v nelineinoi mekhanike, Nauk. dumka, Kiev, 1971 | MR

[8] A. G. Baskakov, Zamena Krylova–Bogolyubova v teorii nelineinykh vozmuschenii lineinykh operatorov, Preprint No 80–19, In-t matematiki AN USSR, Kiev, 1980 | MR

[9] K. O. Fridrikhs, Vozmuschenie spektra v gilbertovom prostranstve, Mir, M., 1969

[10] A. G. Baskakov, “Metody abstraktnogo garmonicheskogo analiza v teorii vozmuschenii lineinykh operatorov”, Sib. matem. zhurn., 24:1 (1983), 21–39 | MR

[11] A. G. Baskakov, “Metod podobnykh operatorov i formuly regulyarizovannykh sledov”, Izv. VUZov. Matematika, 1984, no. 3, 3–12 | MR | Zbl

[12] A. G. Baskakov, “Abstraktnyi variant zameny Krylova–Bogolyubova i nekotorye voprosy teorii nelineinykh vozmuschenii lineinykh operatorov”, IX Mezhdunarodnaya konf. po nelineinym kolebaniyam, t. 1 (Kiev, 30 avg.–6 sent. 1981), Kiev, 1984, 75–79 | MR

[13] N. P. Kuptsov, “Pryamye i obratnye teoremy priblizhenii i polugruppy operatorov”, UMN, 23:4 (1968), 117–178 | MR | Zbl

[14] Yu. I. Lyubich, V. I. Matsaev, “Ob operatorakh s otdelimym spektrom”, Matem. sb., 56(98) (1962), 433–468

[15] M. S. Agranovich, “Spektralnye svoistva zadach difraktsii”, N. N. Voitovich, B. Z. Katselenbaum, A. N. Sivov, Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977, 289–416 | MR

[16] M. S. Agranovich, “O skhodimosti ryadov po kornevym vektoram operatorov, blizkikh k samosopryazhennym”, Tr. MMO, 41 (1980), 163–180 | MR | Zbl

[17] L. F. Fridlender, “O nekotorykh spektralnykh svoistvakh ochen slabykh nesamosopryazhennykh vozmuschenii samosopryazhennykh operatorov”, Tr. MMO, 41 (1980), 181–216 | MR | Zbl

[18] V. A. Ilin, “Neobkhodimye i dostatochnye usloviya bazisnosti i ravnoskhodimosti s trigonometricheskim ryadom spektralnykh razlozhenii i razlozhenii po sistemam eksponent”, DAN SSSR, 273:4 (1983), 789–793 | MR

[19] A. P. Khromov, “Teoremy o ravnoskhodimosti dlya integro-differentsialnykh i integralnykh operatorov”, Matem. sb., 114 (156) (1981), 378–405 | MR | Zbl

[20] Y. Domar, “Harmonic analysis based in certain commutative Banach algebras”, Acta Math., 96 (1956), 1–66 | DOI | MR | Zbl

[21] Y. Domar, L. Lindahl, “Three spectral notions for representations of commutative Banach algebras”, Ann. Inst. Fourier. Grenoble, 25 (1975), 1–32 | MR | Zbl

[22] Yu. I. Lyubich, Vvedenie v teoriyu banakhovykh predstavlenii grupp, Visha shkola, Kharkov, 1985 | MR | Zbl

[23] A. G. Baskakov, K spektralnomu analizu v banakhovykh modulyakh nad kommutativnymi banakhovymi algebrami, Dep. v VINITI 26 iyulya 1977, No 3058–77, Rukopis predstavlena Voronezhskim un-tom. Voronezh, 1977. 50 s. | Zbl

[24] A. G. Baskakov, “Garmonicheskii analiz kosinusnoi i eksponentsialnoi operatornykh funktsii”, Matem. sb., 124(166) (1984), 68–95 | MR | Zbl

[25] K. De Lecuw, “Fourier series of operators and an extension of the F. and M. Riesz Theorem”, Bull. Amer. Math. Soc., 79 (1973), 342–344 | DOI | MR

[26] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[27] S. G. Krein, Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[28] Li Bringen, “The pertubation theory for linear operators of discrete type”, Pasif. J. Math., 104:1 (1983), 29–38

[29] V. B. Lidskii, “Ob odnoi otsenke rezolventy ellipticheskogo differentsialnogo operatora”, Funkts. analiz, 10:4 (1976), 89–90 | MR | Zbl

[30] V. A. Sadovnichii, V. V. Dubrovskii, “Svoistva spektra diskretnykh operatorov”, Vestn. MGU. Mat.-mekh., 1967, no. 5, 37–44 | MR

[31] M. G. Gasymov, “Spektralnyi analiz odnogo klassa obyknovennykh differentsialnykh operatorov s periodicheskimi koeffitsientami”, DAN SSSR, 252:2 (1980), 277–280 | MR | Zbl

[32] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[33] G. M. Keselman, “O spektralnosti vozmuschennogo operatora Shturma–Liuvillya s nelokalnymi kraevymi usloviyami”, Differents. uravneniya, 21:3 (1985), 494–499 | MR

[34] B. C. Rykhlov, “Bezuslovnaya skhodimost razlozhenii po sobstvennym funktsiyam nekotorykh differentsialnykh operatorov”, Vychisl. metody i programmirovanie, no. 3, Saratov, 1983, 64–71

[35] B. C. Rykhlov, “O skorosti ravnoskhodimosti dlya differentsialnykh operatorov s nenulevym koeffitsientom pri $(n-1)$-oi proizvodnoi”, DAN SSSR, 279:5 (1984), 1053–1056 | MR | Zbl

[36] M. Sh. Birman, M. Z. Solomyak, “Asimptotika spektra differentsialnykh uravnenii”, Itogi nauki i tekhniki. Matem. analiz, 14, VINITI, M., 1977, 5–58 | MR