Conditions for finite existence time of maximal tubes and bands in Lorentzian warped products
Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 629-643

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be an $n$-dimensional Riemannian manifold, $\delta>0$ a smooth function on $H$, and $\widehat R$ the interval $(-\infty, +\infty)$ furnished with a negative definite metric $(-dt^2)$. Let $H\times_\delta\widehat R$ be the corresponding Lorentzian warped product [1, § 2.6]. We investigate the spacelike tubes and bands $\mathscr M$ with zero mean curvature in $\Omega\subset H$. It is shown that if $\mathscr M$ projects one-to-one onto some domain $\Omega\subset H$ of $\delta$-hyperbolic type, then $\mathscr M$ has a finite existence time. Examples are considered of maximal tubes and bands in Schwarzschild and de Sitter spaces. Geometric criteria are obtained for $\Omega$ to be of $\delta$-hyperbolic type.
@article{IM2_1995_44_3_a9,
     author = {V. A. Klyachin and V. M. Miklyukov},
     title = {Conditions for finite existence time of maximal tubes and bands in {Lorentzian} warped products},
     journal = {Izvestiya. Mathematics },
     pages = {629--643},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a9/}
}
TY  - JOUR
AU  - V. A. Klyachin
AU  - V. M. Miklyukov
TI  - Conditions for finite existence time of maximal tubes and bands in Lorentzian warped products
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 629
EP  - 643
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a9/
LA  - en
ID  - IM2_1995_44_3_a9
ER  - 
%0 Journal Article
%A V. A. Klyachin
%A V. M. Miklyukov
%T Conditions for finite existence time of maximal tubes and bands in Lorentzian warped products
%J Izvestiya. Mathematics 
%D 1995
%P 629-643
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a9/
%G en
%F IM2_1995_44_3_a9
V. A. Klyachin; V. M. Miklyukov. Conditions for finite existence time of maximal tubes and bands in Lorentzian warped products. Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 629-643. http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a9/