Conditions for finite existence time of maximal tubes and bands in Lorentzian warped products
Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 629-643
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $H$ be an $n$-dimensional Riemannian manifold, $\delta>0$ a smooth function on $H$, and $\widehat R$ the interval $(-\infty, +\infty)$ furnished with a negative definite metric $(-dt^2)$. Let $H\times_\delta\widehat R$ be the corresponding Lorentzian warped product [1, § 2.6]. We investigate the spacelike tubes and bands $\mathscr M$ with zero mean curvature in $\Omega\subset H$. It is shown that if $\mathscr M$ projects one-to-one onto some domain $\Omega\subset H$ of $\delta$-hyperbolic type, then $\mathscr M$ has a finite existence time. Examples are considered of maximal tubes and bands in Schwarzschild and de Sitter spaces. Geometric criteria are obtained for $\Omega$ to be of $\delta$-hyperbolic type.
@article{IM2_1995_44_3_a9,
author = {V. A. Klyachin and V. M. Miklyukov},
title = {Conditions for finite existence time of maximal tubes and bands in {Lorentzian} warped products},
journal = {Izvestiya. Mathematics },
pages = {629--643},
publisher = {mathdoc},
volume = {44},
number = {3},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a9/}
}
TY - JOUR AU - V. A. Klyachin AU - V. M. Miklyukov TI - Conditions for finite existence time of maximal tubes and bands in Lorentzian warped products JO - Izvestiya. Mathematics PY - 1995 SP - 629 EP - 643 VL - 44 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a9/ LA - en ID - IM2_1995_44_3_a9 ER -
V. A. Klyachin; V. M. Miklyukov. Conditions for finite existence time of maximal tubes and bands in Lorentzian warped products. Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 629-643. http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a9/