Algebraic cycles on an abelian variety without complex multiplication
Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 531-553.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem to the effect that if a natural number $d$ is not exceptional, then all $d$-dimensional abelian varieties without complex multiplication satisfy the Grothendieck version of the general Hodge conjecture. Exceptional numbers have density zero in the set of natural numbers. If $\operatorname{End}(J)=\mathbf Z$, $J$ is defined over a number field, and $\dim J=2p$, where $p$ is a prime number, $p\ne 2$ and $p\ne 5$, then the Mumford–Tate conjecture and the Tate conjecture on algebraic cycles hold for the variety $J$.
@article{IM2_1995_44_3_a4,
     author = {S. G. Tankeev},
     title = {Algebraic cycles on an abelian variety without complex multiplication},
     journal = {Izvestiya. Mathematics },
     pages = {531--553},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a4/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - Algebraic cycles on an abelian variety without complex multiplication
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 531
EP  - 553
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a4/
LA  - en
ID  - IM2_1995_44_3_a4
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T Algebraic cycles on an abelian variety without complex multiplication
%J Izvestiya. Mathematics 
%D 1995
%P 531-553
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a4/
%G en
%F IM2_1995_44_3_a4
S. G. Tankeev. Algebraic cycles on an abelian variety without complex multiplication. Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 531-553. http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a4/

[1] N. Burbaki, Gruppy i algebry Li, gl. 1–3, Mir, M., 1976 ; гл. 4–6, 1972 ; гл. 7–8, 1978 | MR | Zbl | MR

[2] M. V. Borovoi, “Gruppa Khodzha i algebra endomorfizmov abeleva mnogoobraziya”, Voprosy teorii grupp i gomologicheskoi algebry, Izd-vo YarGU, Yaroslavl, 1981, 124–126 | MR

[3] W. Chi, “$l$-adic and $\lambda$-adic representations associated to Abelian varieties defined over number fields”, Amer. J. Math., 114 (1992), 315–353 | DOI | MR | Zbl

[4] P. Deligne, “Théorie de Hodge. III”, Publ. Math. IHES, 44 (1974), 5–77 | MR | Zbl

[5] A. Grothendieck, “Hodge's general conjecture is false for trivial reasons”, Topology, 8 (1969), 299–303 | DOI | MR | Zbl

[6] Yu. G. Zarhin, “Linear irreducible Lie algebras and Hodge structures”, Lect. Notes in Math., 1479, 1991, 281–297 | MR | Zbl

[7] Yu. G. Zarkhin, “Vesa prostykh algebr Li v kogomologiyakh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 264–304 | MR | Zbl

[8] Yu. G. Zarkhin, “Abelevy mnogoobraziya, $l$-adicheskie predstavleniya i $SL_2$”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 294–308 | MR | Zbl

[9] S. L. Kleiman, “Algebraic cycles and the Weil conjectures”, Dix exposes sur la cohomologie des schémas, North-Holland, Amsterdam, 1968, 359–386 | MR

[10] S. Leng, Osnovy diofantovoi geometrii, Mir, M., 1986 | MR | Zbl

[11] D. Mumford, “Families of abelian varieties. Algebraic groups and discontinuous subgroups”, Proc. Symp. in Pure Math., 9 (1966), 347–352 | MR

[12] D. Mamford, Abelevy mnogoobraziya, Mir, M., 1971

[13] Zh.-P. Serr, Algebraicheskie gruppy i polya klassov, Mir, M., 1968

[14] J.-P. Serre, “Representations $l$-adiques”, Algebraic number theory, Papers contributed for the International Symposium (Kyoto, 1976), ed. S. Iyanaga, Japan Society for the Promotion of Science, Tokyo, 1977, 177–193 | MR

[15] J.-P. Serre, “Resume des cours de 1984–85”, Annuaire du Collège de France, 1985, 1–8

[16] J.-P. Serre, “Groupes algebriques associes aux modules de Hodge–Tate”, Astérisque, 65 (1979), 155–188 | MR

[17] J. Tate, “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry, New York, 1965, 93–110 | MR | Zbl

[18] J. Tate, “Classes d'isogénie des variétés abéliennes sur un corps fini (d'aprés T. Honda)”, Séminaire Bourbaki 1968/69, Exposé 352, Lecture Notes in Math., 179, 1971, 95–110

[19] S. G. Tankeev, “Ob algebraicheskikh tsiklakh na abelevykh mnogoobraziyakh. II”, Izv. AN SSSR. Ser. matem., 43:2 (1979), 418–429 | MR | Zbl

[20] S. G. Tankeev, “Ob algebraicheskikh tsiklakh na poverkhnostyakh i abelevykh mnogoobraziyakh”, Izv. AN SSSR. Ser. matem., 45:2 (1981), 398–434 | MR | Zbl

[21] S. G. Tankeev, “Tsikly na prostykh abelevykh mnogoobraziyakh prostoi razmernosti nad chislovymi polyami”, Izv. AN SSSR. Ser. matem., 51:6 (1987), 1214–1227 | MR

[22] S. G. Tankeev, “Abelevy mnogoobraziya i obschaya gipoteza Khodzha”, Izv. RAN. Ser. matem., 57:4 (1993), 192–205

[23] F. Hazama, The generalized Hodge conjecture for stably nondegenerate abelian varieties, Preprint, Tokyo Denki University, 1992 | MR