Algebraic cycles on an abelian variety without complex multiplication
Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 531-553

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a theorem to the effect that if a natural number $d$ is not exceptional, then all $d$-dimensional abelian varieties without complex multiplication satisfy the Grothendieck version of the general Hodge conjecture. Exceptional numbers have density zero in the set of natural numbers. If $\operatorname{End}(J)=\mathbf Z$, $J$ is defined over a number field, and $\dim J=2p$, where $p$ is a prime number, $p\ne 2$ and $p\ne 5$, then the Mumford–Tate conjecture and the Tate conjecture on algebraic cycles hold for the variety $J$.
@article{IM2_1995_44_3_a4,
     author = {S. G. Tankeev},
     title = {Algebraic cycles on an abelian variety without complex multiplication},
     journal = {Izvestiya. Mathematics },
     pages = {531--553},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a4/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - Algebraic cycles on an abelian variety without complex multiplication
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 531
EP  - 553
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a4/
LA  - en
ID  - IM2_1995_44_3_a4
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T Algebraic cycles on an abelian variety without complex multiplication
%J Izvestiya. Mathematics 
%D 1995
%P 531-553
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a4/
%G en
%F IM2_1995_44_3_a4
S. G. Tankeev. Algebraic cycles on an abelian variety without complex multiplication. Izvestiya. Mathematics , Tome 44 (1995) no. 3, pp. 531-553. http://geodesic.mathdoc.fr/item/IM2_1995_44_3_a4/