The Hardy–Littlewood problem for regular and uniformly distributed number sequences
Izvestiya. Mathematics, Tome 44 (1995) no. 2, pp. 359-371
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $H$ be the set of functions $f(x)$ defined in $(0, 1)$, $f(0+0)=f(1-0)=+\infty$, monotone in neighborhoods of singular points and such that the improper Riemann integral $\int\limits_0^1f(x)\,dx$ converges. Let $Q$ be an arbitrary set of sequences $(\{x_i\})_{i=1}^\infty$ uniformly distributed in the interval $[0, 1]$. We find the set of those pairs in $H\times Q$ for which the following equality is valid: $$ \lim\limits_{n\to\infty}\frac{1}{n}\sum_{i=1}^n f(\{x_i\})=\int\limits_0^1f(x)\,dx. $$
@article{IM2_1995_44_2_a7,
author = {V. A. Oskolkov},
title = {The {Hardy{\textendash}Littlewood} problem for regular and uniformly distributed number sequences},
journal = {Izvestiya. Mathematics},
pages = {359--371},
year = {1995},
volume = {44},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a7/}
}
V. A. Oskolkov. The Hardy–Littlewood problem for regular and uniformly distributed number sequences. Izvestiya. Mathematics, Tome 44 (1995) no. 2, pp. 359-371. http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a7/
[1] Dok. V. S. Kassels, Vvedenie v teoriyu diofantovykh priblizhenii, IL, M., 1961
[2] G. H. Hardi, J. E. Littlewood, “Notes of the theory of series. XXIV. A curious power-series”, Proc. Cambridge Phil. Soc., 42 (1946), 85–90 | DOI | MR
[3] V. A. Oskolkov, “Zadachi Khardi–Litlvuda o ravnomernom raspredelenii arifmeticheskikh progressii”, Izv. AN SSSR. Ser. matem., 54:1 (1990), 159–172 | MR | Zbl