Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1995_44_2_a2, author = {V. I. Bakhtin}, title = {Random processes generated by a hyperbolic sequence of mappings. {I}}, journal = {Izvestiya. Mathematics }, pages = {247--279}, publisher = {mathdoc}, volume = {44}, number = {2}, year = {1995}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a2/} }
V. I. Bakhtin. Random processes generated by a hyperbolic sequence of mappings. I. Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 247-279. http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a2/
[1] D. Ruelle, “A measure associated with Axiom $A$ attractors”, Amer. J. Math., 98 (1976), 619–654 | DOI | MR | Zbl
[2] Ya. G. Sinai, “Markovskie razbieniya i $Y$-diffeomorfizmy”, Funkts. analiz, 2:1 (1968), 64–89 | MR | Zbl
[3] Ya. G. Sinai, “Gibbsovskie mery v ergodicheskoi teorii”, UMN, 27:4 (1972), 21–64 | MR | Zbl
[4] R. Bouen, Metody simvolicheskoi dinamiki, Mir, M., 1979
[5] A. Lasota, J. A. Yorke, “On the existence of invariant measures for piecewise monotonic transformations”, Trans. Amer. Math. Soc., 186 (1973), 481–488 | DOI | MR
[6] F. Hofbauer, G. Keller, “Ergodic properties of invariant measures for piecewise monotonic transformations”, Math. Z., 180:1 (1982), 119–140 | DOI | MR | Zbl
[7] M. L. Blank, “Malye vozmuscheniya khaoticheskikh dinamicheskikh sistem”, UMN, 44:6 (1989), 3–28 | MR | Zbl
[8] G. A. Margulis, “O nekotorykh merakh, svyazannykh s $Y$-potokami na kompaktnykh mnogoobraziyakh”, Funkts. analiz, 4:1 (1970), 62–76 | MR | Zbl
[9] V. I. Bakhtin, “Pryamoi metod postroeniya invariantnoi mery na giperbolicheskom attraktore”, Izv. RAN. Ser. matem., 56:5 (1992), 934–957 | MR | Zbl