Random processes generated by a hyperbolic sequence of mappings. I
Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 247-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a sequence of smooth mappings of a Riemannian manifold, which is a nonstationary analogue of a hyperbolic dynamical system, a compatible sequence of measures carrying one into another under the mappings is constructed. A geometric interpretation is given for these measures, and it is proved that they depend smoothly on the parameter. The central limit theorem is proved for a sequence of smooth functions on the manifold with respect to these measures; it is shown that the correlations decrease exponentially, and an exponential estimate like Bernstein's inequality is obtained for probabilities of large deviations.
@article{IM2_1995_44_2_a2,
     author = {V. I. Bakhtin},
     title = {Random processes generated by a hyperbolic sequence of mappings. {I}},
     journal = {Izvestiya. Mathematics },
     pages = {247--279},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a2/}
}
TY  - JOUR
AU  - V. I. Bakhtin
TI  - Random processes generated by a hyperbolic sequence of mappings. I
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 247
EP  - 279
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a2/
LA  - en
ID  - IM2_1995_44_2_a2
ER  - 
%0 Journal Article
%A V. I. Bakhtin
%T Random processes generated by a hyperbolic sequence of mappings. I
%J Izvestiya. Mathematics 
%D 1995
%P 247-279
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a2/
%G en
%F IM2_1995_44_2_a2
V. I. Bakhtin. Random processes generated by a hyperbolic sequence of mappings. I. Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 247-279. http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a2/

[1] D. Ruelle, “A measure associated with Axiom $A$ attractors”, Amer. J. Math., 98 (1976), 619–654 | DOI | MR | Zbl

[2] Ya. G. Sinai, “Markovskie razbieniya i $Y$-diffeomorfizmy”, Funkts. analiz, 2:1 (1968), 64–89 | MR | Zbl

[3] Ya. G. Sinai, “Gibbsovskie mery v ergodicheskoi teorii”, UMN, 27:4 (1972), 21–64 | MR | Zbl

[4] R. Bouen, Metody simvolicheskoi dinamiki, Mir, M., 1979

[5] A. Lasota, J. A. Yorke, “On the existence of invariant measures for piecewise monotonic transformations”, Trans. Amer. Math. Soc., 186 (1973), 481–488 | DOI | MR

[6] F. Hofbauer, G. Keller, “Ergodic properties of invariant measures for piecewise monotonic transformations”, Math. Z., 180:1 (1982), 119–140 | DOI | MR | Zbl

[7] M. L. Blank, “Malye vozmuscheniya khaoticheskikh dinamicheskikh sistem”, UMN, 44:6 (1989), 3–28 | MR | Zbl

[8] G. A. Margulis, “O nekotorykh merakh, svyazannykh s $Y$-potokami na kompaktnykh mnogoobraziyakh”, Funkts. analiz, 4:1 (1970), 62–76 | MR | Zbl

[9] V. I. Bakhtin, “Pryamoi metod postroeniya invariantnoi mery na giperbolicheskom attraktore”, Izv. RAN. Ser. matem., 56:5 (1992), 934–957 | MR | Zbl