On~orbit connectedness, orbit convexity and envelopes of holomorphy
Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 403-413

Voir la notice de l'article provenant de la source Math-Net.Ru

We are concerned with the univalence and discription of the envelope of holomorphy $E(D)$ for a domain $D$ having a compact Lie group action. Our main result is the following: Let $X$ be a holomorphic Stein $K^C$-manifold, $D\subset X$ a $K$-invariant orbit connected domain. Then $E(D)$ is schlicht and orbit convex if and only if $E(K^C\cdot D)$ is schlicht. Moreover, in this case, $E(K^C\cdot D)=K^C\cdot e(d)$.
@article{IM2_1995_44_2_a10,
     author = {Xiang-Yu Zhou},
     title = {On~orbit connectedness, orbit convexity and envelopes of holomorphy},
     journal = {Izvestiya. Mathematics },
     pages = {403--413},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a10/}
}
TY  - JOUR
AU  - Xiang-Yu Zhou
TI  - On~orbit connectedness, orbit convexity and envelopes of holomorphy
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 403
EP  - 413
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a10/
LA  - en
ID  - IM2_1995_44_2_a10
ER  - 
%0 Journal Article
%A Xiang-Yu Zhou
%T On~orbit connectedness, orbit convexity and envelopes of holomorphy
%J Izvestiya. Mathematics 
%D 1995
%P 403-413
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a10/
%G en
%F IM2_1995_44_2_a10
Xiang-Yu Zhou. On~orbit connectedness, orbit convexity and envelopes of holomorphy. Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 403-413. http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a10/