On~orbit connectedness, orbit convexity and envelopes of holomorphy
Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 403-413
Voir la notice de l'article provenant de la source Math-Net.Ru
We are concerned with the univalence and discription of the envelope of holomorphy $E(D)$ for a domain $D$ having a compact Lie group action. Our main result is the following:
Let $X$ be a holomorphic Stein $K^C$-manifold, $D\subset X$ a $K$-invariant orbit connected domain. Then $E(D)$ is schlicht and orbit convex if and only if $E(K^C\cdot D)$ is schlicht. Moreover, in this case, $E(K^C\cdot D)=K^C\cdot e(d)$.
@article{IM2_1995_44_2_a10,
author = {Xiang-Yu Zhou},
title = {On~orbit connectedness, orbit convexity and envelopes of holomorphy},
journal = {Izvestiya. Mathematics },
pages = {403--413},
publisher = {mathdoc},
volume = {44},
number = {2},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a10/}
}
Xiang-Yu Zhou. On~orbit connectedness, orbit convexity and envelopes of holomorphy. Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 403-413. http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a10/