Indentification of the Hilbert function and Poincar\'e series, and the dimension of modules over filtered rings
Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 225-246.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is shown how to reconstruct a Poincaré series from a known Hilbert (integral) function of a graded module over a commutative Noetherian graded ring, and vice versa. The dimension and multiplicity of modules over a filtered ring whose associated graded ring is commutative and Noetherian are introduced. For one class of generalized Weyl algebras that includes the Weyl algebras $A_n$, the Krull dimension is computed, and Bernstein's inequality is proved and strengthened.
@article{IM2_1995_44_2_a1,
     author = {V. V. Bavula},
     title = {Indentification of the {Hilbert} function and {Poincar\'e} series, and the dimension of modules over filtered rings},
     journal = {Izvestiya. Mathematics },
     pages = {225--246},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a1/}
}
TY  - JOUR
AU  - V. V. Bavula
TI  - Indentification of the Hilbert function and Poincar\'e series, and the dimension of modules over filtered rings
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 225
EP  - 246
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a1/
LA  - en
ID  - IM2_1995_44_2_a1
ER  - 
%0 Journal Article
%A V. V. Bavula
%T Indentification of the Hilbert function and Poincar\'e series, and the dimension of modules over filtered rings
%J Izvestiya. Mathematics 
%D 1995
%P 225-246
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a1/
%G en
%F IM2_1995_44_2_a1
V. V. Bavula. Indentification of the Hilbert function and Poincar\'e series, and the dimension of modules over filtered rings. Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 225-246. http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a1/

[1] R. Khartskhorn, Algebraicheskaya geometriya, Mir, M., 1981 | MR | Zbl

[2] M. Atya, I. Makdonald, Vvedenie v kommutativnuyu algebru, Mir, M., 1972 | MR

[3] J. E. Bjork, Rings of differential operators, North Holland, Amsterdam, 1979 | MR

[4] V. V. Bavula, “Konechnomernost $\operatorname{Ext}^n$-ov i $\operatorname{Tor}_n$-ov prostykh modulei nad odnim klassom algebr”, Funkts. analiz i ego prilozh., 25:3 (1991), 80–82 | MR | Zbl

[5] V. V. Bavula, “Obobschennye algebry Veilya i ikh predstavleniya”, Algebra i analiz, 4:1 (1992), 75–97 | MR | Zbl

[6] V. V. Bavula, “Klassifikatsiya dvustoronnikh idealov v odnom klasse nekommutativnykh kolets”, Ukr. matem. zhurn., 45:2 (1993), 209–220 | MR | Zbl

[7] V. V. Bavula, “Krainie moduli nad algebroi Veilya $A_n$”, Ukr. matem. zhurn., 45:9 (1993), 1187–1197 | MR | Zbl

[8] E. K. Sklyanin, “Functional Bethe anzatz”, Integrable and superintegrable system, ed. B. A. Kupershmidt, World Sci., Singapure, 1991, 8–33 | MR

[9] I. N. Bernshtein, “Moduli nad koltsom differentsialnykh operatorov. Izuchenie fundamentalnykh reshenii s postoyannymi koeffitsientami”, Funkts. analiz i ego prilozh., 5:2 (1971), 1–16 | MR

[10] S. I. Gelfand, Yu. I. Manin, “Gomologicheskaya algebra”, Itogi nauki i tekhniki. Ser. sovremennye problemy matematiki. Algebra, 38, VINITI, M., 1989 | MR

[11] E. R. Kolchin, “The notion of dimension in the theory of algebraic differential equations”, Bull. Amer. Math. Soc., 70:4 (1964), 570–573 | DOI | MR | Zbl

[12] E. K. Kolchin, Differential algebra and algebraic groups, Acad. Press, N.Y.–London, 1973 | Zbl

[13] J. Johnson, “Differential dimention polynomials and a fundamental theorem on differential modules”, Amer. J. Math., 69:1 (1969), 239–248 | DOI | MR

[14] A. V. Mikhalev, E. V. Pankratev, “Differentsialnyi razmernostnyi mnogochlen sistemy differentsialnykh uravnenii”, Algebra, MGU, M., 1980, 57–67

[15] A. B. Levin, A. V. Mikhalev, “Razmernostnye mnogochleny filtrovannykh $G$-modulei i konechno porozhdennykh rasshirenii $G$-polei”, Sb. rabot po algebre, MGU, M., 1989, 74–95

[16] R. Rentschler, P. Gabriel, “Sur la dimension des anneaux et ensembles ordonnes”, C.R. Acad. Sci. Paris, ser. A, 265 (1967), 712–715 | MR | Zbl