Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain
Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 207-223
Voir la notice de l'article provenant de la source Math-Net.Ru
In a domain $\omega\times\mathbf R\subset\mathbf R^{n+1}$ the elliptic system
\begin{equation}
\partial^2_tu+\gamma\partial_tu+a\Delta u-a_0u-f(u)=g
\tag{1}
\end{equation}
is considered with a Neumann boundary condition. $U_+(u_0)$ denotes the set of solutions $u(x,t)$ of this system defined for $t\geqslant 0$, equal to $u_0$ for $t=0$, and bounded in $L_2(\omega)$ uniformly for $t\geqslant 0$.
In the space $H^{3/2}$ of initial data $u_0$ there arises the semigroup $\{S_t\}$, $S_tu_0=\{\upsilon\colon\upsilon=u(t),\ u\in U_+(u_0)\}$, wherein to the point $u_0$ there is assigned the set $S_tu_0$, i.e., $S_t$ is a multivalued mapping. In the paper it is proved that $\{S_t\}$ has a global attractor $\mathfrak A$. A theorem is proved that
$$
\mathfrak A=\{\upsilon\colon\upsilon=u(t),\ u\in V,\ t\in\mathbf R\},
$$
where $V$ is the set of solutions of the elliptic system, defined and bounded for $t\in\mathbf R$.
@article{IM2_1995_44_2_a0,
author = {A. V. Babin},
title = {Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain},
journal = {Izvestiya. Mathematics },
pages = {207--223},
publisher = {mathdoc},
volume = {44},
number = {2},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a0/}
}
TY - JOUR AU - A. V. Babin TI - Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain JO - Izvestiya. Mathematics PY - 1995 SP - 207 EP - 223 VL - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a0/ LA - en ID - IM2_1995_44_2_a0 ER -
A. V. Babin. Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain. Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 207-223. http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a0/