Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain
Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 207-223.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a domain $\omega\times\mathbf R\subset\mathbf R^{n+1}$ the elliptic system \begin{equation} \partial^2_tu+\gamma\partial_tu+a\Delta u-a_0u-f(u)=g \tag{1} \end{equation} is considered with a Neumann boundary condition. $U_+(u_0)$ denotes the set of solutions $u(x,t)$ of this system defined for $t\geqslant 0$, equal to $u_0$ for $t=0$, and bounded in $L_2(\omega)$ uniformly for $t\geqslant 0$. In the space $H^{3/2}$ of initial data $u_0$ there arises the semigroup $\{S_t\}$, $S_tu_0=\{\upsilon\colon\upsilon=u(t),\ u\in U_+(u_0)\}$, wherein to the point $u_0$ there is assigned the set $S_tu_0$, i.e., $S_t$ is a multivalued mapping. In the paper it is proved that $\{S_t\}$ has a global attractor $\mathfrak A$. A theorem is proved that $$ \mathfrak A=\{\upsilon\colon\upsilon=u(t),\ u\in V,\ t\in\mathbf R\}, $$ where $V$ is the set of solutions of the elliptic system, defined and bounded for $t\in\mathbf R$.
@article{IM2_1995_44_2_a0,
     author = {A. V. Babin},
     title = {Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain},
     journal = {Izvestiya. Mathematics },
     pages = {207--223},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a0/}
}
TY  - JOUR
AU  - A. V. Babin
TI  - Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 207
EP  - 223
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a0/
LA  - en
ID  - IM2_1995_44_2_a0
ER  - 
%0 Journal Article
%A A. V. Babin
%T Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain
%J Izvestiya. Mathematics 
%D 1995
%P 207-223
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a0/
%G en
%F IM2_1995_44_2_a0
A. V. Babin. Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain. Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 207-223. http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a0/

[1] A. V. Babin, M. I. Vishik, “Maksimalnye attraktory polugrupp, sootvetstvuyuschikh evolyutsionnym differentsialnym uravneniyam”, Matem. sb., 126:3 (1985), 397–419 | MR

[2] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[3] Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, G. M. Makhviladze, Matematicheskaya teoriya goreniya i vzryva, Nauka, M., 1980 | MR

[4] A. P. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byull. Mosk. univ-ta. Ser. matem. i mekh., 6:1 (1937), 1–26

[5] M. A. Krasnoselskii, Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR

[6] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[7] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi, Mir, M., 1971 | Zbl

[8] H. Beresticki, L. Nirenberg, Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains, Preprint

[9] A. Calsina, X. Mora, J. Sola-Morales, The dynamical approach to elliptic problems in cylindrical domains and a study of their parabolic singular limit, Preprint | MR

[10] X.-Y. Chen, H. Matano, L. Véron, “Anisotropic Singularities of Solutions of Nonlinear Elliptic Equations in $\mathbf R^2$”, Journal of Functional Analysis, 83:1 (1989), 50–97 | DOI | MR | Zbl