Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1995_44_2_a0, author = {A. V. Babin}, title = {Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain}, journal = {Izvestiya. Mathematics }, pages = {207--223}, publisher = {mathdoc}, volume = {44}, number = {2}, year = {1995}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a0/} }
TY - JOUR AU - A. V. Babin TI - Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain JO - Izvestiya. Mathematics PY - 1995 SP - 207 EP - 223 VL - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a0/ LA - en ID - IM2_1995_44_2_a0 ER -
A. V. Babin. Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain. Izvestiya. Mathematics , Tome 44 (1995) no. 2, pp. 207-223. http://geodesic.mathdoc.fr/item/IM2_1995_44_2_a0/
[1] A. V. Babin, M. I. Vishik, “Maksimalnye attraktory polugrupp, sootvetstvuyuschikh evolyutsionnym differentsialnym uravneniyam”, Matem. sb., 126:3 (1985), 397–419 | MR
[2] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl
[3] Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, G. M. Makhviladze, Matematicheskaya teoriya goreniya i vzryva, Nauka, M., 1980 | MR
[4] A. P. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem kolichestva veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byull. Mosk. univ-ta. Ser. matem. i mekh., 6:1 (1937), 1–26
[5] M. A. Krasnoselskii, Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR
[6] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[7] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi, Mir, M., 1971 | Zbl
[8] H. Beresticki, L. Nirenberg, Some qualitative properties of solutions of semilinear elliptic equations in cylindrical domains, Preprint
[9] A. Calsina, X. Mora, J. Sola-Morales, The dynamical approach to elliptic problems in cylindrical domains and a study of their parabolic singular limit, Preprint | MR
[10] X.-Y. Chen, H. Matano, L. Véron, “Anisotropic Singularities of Solutions of Nonlinear Elliptic Equations in $\mathbf R^2$”, Journal of Functional Analysis, 83:1 (1989), 50–97 | DOI | MR | Zbl