New two-radii theorems in the theory of harmonic functions
Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 181-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

Functions satisfying the mean value equation over balls of several fixed radii are investigated. A number of substantial amplifications of known theorems of Delsarte and Flatto are obtained. Considered also is the case when the mean value equation is satisfied only approximately (restriction on the growth of the difference between the value of the function at the center of a ball and the mean value over that ball), but nevertheless allows deduction of harmonicity of the function under certain conditions.
@article{IM2_1995_44_1_a8,
     author = {V. V. Volchkov},
     title = {New two-radii theorems in the theory of harmonic functions},
     journal = {Izvestiya. Mathematics },
     pages = {181--192},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a8/}
}
TY  - JOUR
AU  - V. V. Volchkov
TI  - New two-radii theorems in the theory of harmonic functions
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 181
EP  - 192
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a8/
LA  - en
ID  - IM2_1995_44_1_a8
ER  - 
%0 Journal Article
%A V. V. Volchkov
%T New two-radii theorems in the theory of harmonic functions
%J Izvestiya. Mathematics 
%D 1995
%P 181-192
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a8/
%G en
%F IM2_1995_44_1_a8
V. V. Volchkov. New two-radii theorems in the theory of harmonic functions. Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 181-192. http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a8/

[1] L. Platto, “The converse of Gauss's theorem for harmonic function”, J. Oifferent. Equat., 1:4 (1965), 483–490 | DOI | MR

[2] V. V. Volchkov, “Teoremy o sharovykh srednikh dlya nekotorykh differentsialnykh uravnenii”, DAN USSR, 1992, no. 5, 9–12

[3] V. V. Volchkov, “Teoremy o srednem znachenii dlya nekotorykh differentsialnykh uravnenii”, DAN USSR, 1991, no. 6, 8–11 | MR

[4] V. V. Volchkov, Teoremy o srednem dlya nekotorykh differentsialnykh uravnenii, Dep. v UkrNIINTI 06.03.91, No 301-Uk91, Donetsk. un-t, Donetsk, 1991

[5] V. V. Volchkov, “O funktsiyakh s nulevymi integralami po nekotorym mnozhestvam”, DAN USSR, 1980, no. 8, 9–11 | MR

[6] L. Zalcman, “Offbeat integral geometry”, Amer. Math. Monthly, 87:3 (1980), 161–175 | DOI | MR | Zbl

[7] C. A. Berenstein, L. Zalcman, “Pompeiu's problem on symmetric spacer”, Comment. math. helv., 55:4 (1980), 593–621 | DOI | MR | Zbl

[8] B. G. Korenev, Vvedenie v teoriyu besselevykh funktsii, Nauka, M., 1971 | MR | Zbl

[9] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[10] N. Ya. Vilenkin, Spetsialnye funktsii i teorii predstavlenii grupp, Nauka, M., 1991 | MR | Zbl

[11] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1966 | MR

[12] V. V. Volchkov, “Teoremy o srednem dlya odnogo klassa polinomov”, Sib. mat. zhurn., 35:4 (1994), 737–745 | MR | Zbl

[13] S. Leng, $SL_2(R)$, Mir, M., 1977