Polynomial and rational approximation of functions of several variables with convex
Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 165-179

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\operatorname{Conv}_n^{(l)}(\mathscr G)$ be the set of all functions $f$ such that for every $n$-dimensional unit vector $\mathbf e$ the $l$th derivative in the direction of $\mathbf e$, $D^{(l)}(\mathbf e)f$, is continuous on a convex bounded domain $\mathscr G\subset\mathbf R^n$ $(n\geqslant 2)$ and convex (upwards or downwards) on the nonempty intersection of every line $L\subset\mathbf R^n$ with the domain $\mathscr G$, and let $M^{(l)}(f,\mathscr G)\colon=\sup\{\|D^{(l)}(\mathbf e)f\|_{C(\mathscr G)}\colon\mathbf e\in \mathbf R^n$, $\|\mathbf e\|=1\}\infty$. Sharp, in the sense of order of smallness, estimates of best simultaneous polynomial approximations of the functions $f\in\operatorname{Conv}_n^{(l)}(\mathscr G)$ for which $D^{(l)}(\mathbf e)f\in\operatorname{Lip}_K1$ for every $\mathbf e$, and their derivatives in the metrics of $L_p(\mathscr G)$ $(0$ are obtained. It is proved that the corresponding parts of these estimates are preserved for best rational approximations, on any $n$-dimensional parallelepiped $Q$, of functions $f\in\operatorname{Conv}_n^{(l)}(Q)$ in the metrics of $L_p(Q)$ $(0$ and it is shown that they are sharp in the sense of order of smallness for $0$.
@article{IM2_1995_44_1_a7,
     author = {A. Khatamov},
     title = {Polynomial and rational approximation of functions of several variables with convex},
     journal = {Izvestiya. Mathematics },
     pages = {165--179},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a7/}
}
TY  - JOUR
AU  - A. Khatamov
TI  - Polynomial and rational approximation of functions of several variables with convex
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 165
EP  - 179
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a7/
LA  - en
ID  - IM2_1995_44_1_a7
ER  - 
%0 Journal Article
%A A. Khatamov
%T Polynomial and rational approximation of functions of several variables with convex
%J Izvestiya. Mathematics 
%D 1995
%P 165-179
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a7/
%G en
%F IM2_1995_44_1_a7
A. Khatamov. Polynomial and rational approximation of functions of several variables with convex. Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 165-179. http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a7/