Polynomial and rational approximation of functions of several variables with convex
Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 165-179.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\operatorname{Conv}_n^{(l)}(\mathscr G)$ be the set of all functions $f$ such that for every $n$-dimensional unit vector $\mathbf e$ the $l$th derivative in the direction of $\mathbf e$, $D^{(l)}(\mathbf e)f$, is continuous on a convex bounded domain $\mathscr G\subset\mathbf R^n$ $(n\geqslant 2)$ and convex (upwards or downwards) on the nonempty intersection of every line $L\subset\mathbf R^n$ with the domain $\mathscr G$, and let $M^{(l)}(f,\mathscr G)\colon=\sup\{\|D^{(l)}(\mathbf e)f\|_{C(\mathscr G)}\colon\mathbf e\in \mathbf R^n$, $\|\mathbf e\|=1\}\infty$. Sharp, in the sense of order of smallness, estimates of best simultaneous polynomial approximations of the functions $f\in\operatorname{Conv}_n^{(l)}(\mathscr G)$ for which $D^{(l)}(\mathbf e)f\in\operatorname{Lip}_K1$ for every $\mathbf e$, and their derivatives in the metrics of $L_p(\mathscr G)$ $(0$ are obtained. It is proved that the corresponding parts of these estimates are preserved for best rational approximations, on any $n$-dimensional parallelepiped $Q$, of functions $f\in\operatorname{Conv}_n^{(l)}(Q)$ in the metrics of $L_p(Q)$ $(0$ and it is shown that they are sharp in the sense of order of smallness for $0$.
@article{IM2_1995_44_1_a7,
     author = {A. Khatamov},
     title = {Polynomial and rational approximation of functions of several variables with convex},
     journal = {Izvestiya. Mathematics },
     pages = {165--179},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a7/}
}
TY  - JOUR
AU  - A. Khatamov
TI  - Polynomial and rational approximation of functions of several variables with convex
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 165
EP  - 179
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a7/
LA  - en
ID  - IM2_1995_44_1_a7
ER  - 
%0 Journal Article
%A A. Khatamov
%T Polynomial and rational approximation of functions of several variables with convex
%J Izvestiya. Mathematics 
%D 1995
%P 165-179
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a7/
%G en
%F IM2_1995_44_1_a7
A. Khatamov. Polynomial and rational approximation of functions of several variables with convex. Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 165-179. http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a7/

[1] D. Jackson, Über die Genauigkeit der Annaherung stetiger Funktion durch ganze rationale Funktionen gegebenen Grades und trigonometrische Silmmen gegebener Ordnung, Dis Cöttingen, 1911 | Zbl

[2] I. K. Daugavet, Vvedenie v teoriyu priblizheniya funktsii, Izd-vo LGU, M., 1977 | MR | Zbl

[3] K. G. Ivanov, “Approximation of convex functions by means of polynomials and polygons in $L$-metric”, Approximations and function speces, Proc. Conf. Gdansk, 1979, 287–293 | MR

[4] M. P. Stojanova, “Approximation of a convex function by algebraic polynomials in $L_p[a,b]$ ($1

\infty$)”, Serdica Bulg. math. publ., 11 (1985), 392–397 | MR | Zbl

[5] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[6] S. N. Bernshtein, Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, GONTI, M., 1937

[7] D. J. Newman, “Rational approximation to $|x|$”, Michigan Math. J., 11:1 (1964), 11–14 | DOI | MR | Zbl

[8] E. P. Dolzhenko, “Sravnenie skorostei ratsionalnoi i polinomialnoi approksimatsii”, Matem. zametki, 1:3 (1967), 313–320 | Zbl

[9] P. P. Petrushev, V. A. Popov, Rational spproximation of real functions, Camb. university press,, Cambridge, 1987 | MR | Zbl

[10] A. Khatamov, “O ratsionalnom priblizhenii vypuklykh funktsii v integralnykh metrikakh”, Voprosy teor. funktsii i funk. analiza, Sb. nauch. tr. SamGU, SamGU, Samarkand, 1979, 101–107 | MR

[11] A. Hatamov, “On approximation of convex functions by rational ones in integral metrics”, Anal. Math., 10:1 (1984), 15–21 | DOI | MR | Zbl

[12] A. Khatamov, Effekt $o$ v otsenke nailuchshikh ratsionalnykh priblizhenii vypuklykh funktsii v integralnykh metrikakh, Dep. v UzNIINTI No 1017-Uz. 89, RZhMat. 1989. 9B 140

[13] A. P. Bulanov, “Priblizhenie vypuklykh funktsii dvukh peremennykh posredstvom ratsionalnykh funktsii”, Teoriya pribl. funk., Tr. mezhdunar. konf. (Kiev, 1983), Nauka, M., 1987, 78–79

[14] Khatamov A., “O ratsionalnom priblizhenii vypuklykh funktsii mnogikh peremennykh v integralnykh metrikakh”, Voprosy matem. analiza i ego pril., Sb. nauch. trud. SamGU, SamGU, Samarkand, 1986, 101–109 | MR

[15] A. Khatamov, “O ratsionalnom priblizhenii vypuklykh funktsii mnogikh peremennykh v integralnykh metrikakh”, DAN UzSSR, 1986, no. 11, 10–12 | MR | Zbl

[16] A. Khatamov, “Polinomialnye priblizheniya funktsii mnogikh peremennykh klassov Soboleva”, Dokl. AN RUz., 1991, no. 7, 15–18

[17] N. Sh. Zagirov, “O priblizhenii funktsii obobschennoi konechnoi variatsii posredstvom ratsionalnykh funktsii”, Matem. zametki, 32:5 (1982), 657–668 | MR

[18] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, M., 1958 | MR

[19] M. A. Pekarskii, “Metod posledovatelnykh usrednenii v teorii ratsionalnoi approksimatsii”, DAN BSSR, 21:10 (1977), 876–878 | MR | Zbl

[20] V. A. Popov, “Rational uniform approximation of clas $V_r$ and its applications”, Comptes rendus de l'Acad. bulg. Sci., 29:6 (1976), 791–794 | MR | Zbl