Representation of solutions of a nomegeneous convolution equation in convex domains of the space $C^n$
Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 69-89
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions are given under which each solution of a homogeneous convolution equation in a convex domain in $C^n$ can be represented as a series of linear combinations of integrals of elementary solutions, in terms of complete regularity of the growth of the characteristic function of the convolution operator.
@article{IM2_1995_44_1_a3,
author = {A. S. Krivosheev},
title = {Representation of solutions of a nomegeneous convolution equation in convex domains of the space $C^n$},
journal = {Izvestiya. Mathematics },
pages = {69--89},
publisher = {mathdoc},
volume = {44},
number = {1},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a3/}
}
TY - JOUR AU - A. S. Krivosheev TI - Representation of solutions of a nomegeneous convolution equation in convex domains of the space $C^n$ JO - Izvestiya. Mathematics PY - 1995 SP - 69 EP - 89 VL - 44 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a3/ LA - en ID - IM2_1995_44_1_a3 ER -
A. S. Krivosheev. Representation of solutions of a nomegeneous convolution equation in convex domains of the space $C^n$. Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 69-89. http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a3/