Representation of solutions of a nomegeneous convolution equation in convex domains of the space $C^n$
Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 69-89

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are given under which each solution of a homogeneous convolution equation in a convex domain in $C^n$ can be represented as a series of linear combinations of integrals of elementary solutions, in terms of complete regularity of the growth of the characteristic function of the convolution operator.
@article{IM2_1995_44_1_a3,
     author = {A. S. Krivosheev},
     title = {Representation of solutions of a nomegeneous convolution equation in convex domains of the space $C^n$},
     journal = {Izvestiya. Mathematics },
     pages = {69--89},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a3/}
}
TY  - JOUR
AU  - A. S. Krivosheev
TI  - Representation of solutions of a nomegeneous convolution equation in convex domains of the space $C^n$
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 69
EP  - 89
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a3/
LA  - en
ID  - IM2_1995_44_1_a3
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%T Representation of solutions of a nomegeneous convolution equation in convex domains of the space $C^n$
%J Izvestiya. Mathematics 
%D 1995
%P 69-89
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a3/
%G en
%F IM2_1995_44_1_a3
A. S. Krivosheev. Representation of solutions of a nomegeneous convolution equation in convex domains of the space $C^n$. Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 69-89. http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a3/