Representation of solutions of a nomegeneous convolution equation in convex domains of the space $C^n$
Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 69-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are given under which each solution of a homogeneous convolution equation in a convex domain in $C^n$ can be represented as a series of linear combinations of integrals of elementary solutions, in terms of complete regularity of the growth of the characteristic function of the convolution operator.
@article{IM2_1995_44_1_a3,
     author = {A. S. Krivosheev},
     title = {Representation of solutions of a nomegeneous convolution equation in convex domains of the space $C^n$},
     journal = {Izvestiya. Mathematics },
     pages = {69--89},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a3/}
}
TY  - JOUR
AU  - A. S. Krivosheev
TI  - Representation of solutions of a nomegeneous convolution equation in convex domains of the space $C^n$
JO  - Izvestiya. Mathematics 
PY  - 1995
SP  - 69
EP  - 89
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a3/
LA  - en
ID  - IM2_1995_44_1_a3
ER  - 
%0 Journal Article
%A A. S. Krivosheev
%T Representation of solutions of a nomegeneous convolution equation in convex domains of the space $C^n$
%J Izvestiya. Mathematics 
%D 1995
%P 69-89
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a3/
%G en
%F IM2_1995_44_1_a3
A. S. Krivosheev. Representation of solutions of a nomegeneous convolution equation in convex domains of the space $C^n$. Izvestiya. Mathematics , Tome 44 (1995) no. 1, pp. 69-89. http://geodesic.mathdoc.fr/item/IM2_1995_44_1_a3/

[1] V. V. Napalkov, Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[2] L. Ehrenpreis, Fourier analysis in several complex variables, Wiley-Interscience publishers, N.Y., 1970 | MR | Zbl

[3] V. P. Palamodov, Lineinye differentsialnye operatory s postoyannymi koeffitsientami, Nauka, M., 1967 | MR

[4] C. A. Berenstein, B. A. Taylor, “Interpolation problems in $\mathbf C^n$ with applications to harmonic analysis”, Journ. An. Math., 38 (1980), 188–254 | MR | Zbl

[5] C. A. Berenstein, D. C. Struppa, “Solutions of convolution equations in convex sets”, Amer. J. Math., 109 (1987), 521–543 | DOI | MR | Zbl

[6] A. Merit, D. C. Struppa, “Convolutors in spaces of holomorphic functions”, Lect. Notes in Math., 1276, 1987, 253–275 | MR

[7] V. V. Napalkov, “O bazise v prostranstve reshenii uravneniya svertki”, Matem. zametki, 43:1 (1988), 44–55 | MR

[8] J. J. Wiegerinck, “Growth properties of Paley–Wiener functions on $\mathbf C^n$”, Nederl. Akad. Wetensch. Proc., 87 (1984), 95–112 | MR

[9] R. Sigurdsson, “Convolution equations in domains of $\mathbf C^n$”, Arkiv för Mat., 29 (1991), 285–305 | DOI | MR | Zbl

[10] R. S. Yulmukhametov, “Odnorodnye uravneniya svertki”, DAN SSSR, 316:2 (1991), 312–315 | MR | Zbl

[11] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[12] R. Sigurdsson, “Growth properties of analytic and plurisubharmonic functions of finite order”, Math. Scand., 59 (1986), 234–304 | MR

[13] L. Khermander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[14] E. M. Chirka, Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985 | MR

[15] P. Lelon, L. Gruman, Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989 | MR | Zbl