The infinite-demensional $p$-adic symplectic group
Izvestiya. Mathematics , Tome 43 (1994) no. 3, pp. 421-441.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analogue of the Fock representation is constructed for the infinite-dimensional $p$-adic Heisenberg group.The restricted symplectic group is defined for an infinite-dimensional symplectic space over the field $\mathbf Q_p$of $p$-adic numbers. For the restricted symplectic group a projective representation is constructed that is compatible with the representation of the Heisenberg group, and an expression for the cocycle of this representation is given in terms of the $p$-adic Maslov index. It is proved that the extension corresponding to this cocycle reduces to a $\mathbf Z_2$-extension.
@article{IM2_1994_43_3_a1,
     author = {E. I. Zelenov},
     title = {The infinite-demensional $p$-adic symplectic group},
     journal = {Izvestiya. Mathematics },
     pages = {421--441},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a1/}
}
TY  - JOUR
AU  - E. I. Zelenov
TI  - The infinite-demensional $p$-adic symplectic group
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 421
EP  - 441
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a1/
LA  - en
ID  - IM2_1994_43_3_a1
ER  - 
%0 Journal Article
%A E. I. Zelenov
%T The infinite-demensional $p$-adic symplectic group
%J Izvestiya. Mathematics 
%D 1994
%P 421-441
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a1/
%G en
%F IM2_1994_43_3_a1
E. I. Zelenov. The infinite-demensional $p$-adic symplectic group. Izvestiya. Mathematics , Tome 43 (1994) no. 3, pp. 421-441. http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a1/

[1] Pressli E., Sigal G., Gruppy petel, Mir, M., 1990 | MR

[2] Vershik A. M., “Metagonalnaya i metaplekticheskaya beskonechnomernye gruppy. I: Obschie ponyatiya i metagonalnaya gruppa”, Differentsialnaya geometriya, gruppy Li i mekhanika, Zap. nauchn. sem. LOMI, 123, 1983, 3–35 | MR | Zbl

[3] Shale D., “Linear symmetries of free Boson fields”, Trans. Amer. Math. Soc., 103 (1962), 149–167 | DOI | MR | Zbl

[4] Zelenov E. I., “$p$-Adic Heisenberg Group and Maslov Index”, Comm. in Math. Phys., 155 (1993), 489–502 | DOI | MR | Zbl

[5] Weil A., “Sur certaines gropes d'operatuers unitaires”, Acta Math., 111 (1964), 143–211 | DOI | MR | Zbl

[6] Vladimirov V. S., Volovich I. V., “$p$-Adic quantum mechanics”, Communications in Math. Phys., 123 (1989), 659–676 | DOI | MR | Zbl

[7] Meurice Y., “Quantum mechanics with $p$-adic numbers”, Intern. Journ. Math. Phys. A., 4 (1989), 5133–5147 | DOI | MR | Zbl

[8] Ruelle P., Thiran E., Verstegen D., Weyers J., “Quantum mechanics on $p$-adic fields”, J. Math. Phys., 30 (1989), 2854–2861 | DOI | MR

[9] Vladimirov B. C., Volovich I. V., Zelenov E. I., “Spektralnaya teoriya v $p$-adicheskoi kvantovoi mekhanike i teoriya predstavlenii”, Izv. AN SSSR. Ser. matem., 54:2 (1990), 275–302 | Zbl

[10] Zelenov E. I., “$p$-Adicheskaya kvantovaya mekhanika i kogerentnye sostoyaniya. 2: Sobstvennye funktsii ostsillyatora”, TMF, 86:3 (1991), 375–384 | MR | Zbl

[11] Baez J. C., Segal I. E., Zhou Z., Introduction to algebraic and constructive quantum field theory, Princeton University Press, Princeton, N.J., 1992 | MR | Zbl

[12] Zelenov E. I., “Representations of commutation relations for $p$-adic systems of infinitely many degrees of freedom”, J. Math. Phys., 33 (1992), 178–188 | DOI | MR | Zbl

[13] Milnor Dzh., Khyuzmoller D., Simmetricheskie bilineinye formy, Nauka, M., 1986 | MR | Zbl

[14] Leng S., Algebra, Mir, M., 1968

[15] Schikhof W. H., Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge University Press, Cambridge, 1984 | MR | Zbl