Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1994_43_3_a0, author = {D. P. Zhelobenko}, title = {The algebra of quantum bosons, theb {Shubert} filtration, and {Lusztig} bases}, journal = {Izvestiya. Mathematics }, pages = {397--419}, publisher = {mathdoc}, volume = {43}, number = {3}, year = {1994}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a0/} }
D. P. Zhelobenko. The algebra of quantum bosons, theb Shubert filtration, and Lusztig bases. Izvestiya. Mathematics , Tome 43 (1994) no. 3, pp. 397-419. http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a0/
[1] Burbaki N., Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR | Zbl
[2] Jimbo M., “A $q$-difference analogue of and Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl
[3] Drinfeld V., “Algebry Khopfa i uravnenie Yanga–Bakstera”, DAN SSSR, 32 (1985), 254–258
[4] Zhelobenko D. P., “Ekstremalnye kotsikly na gruppe Veilya”, Funkts. analiz i ego prilozh., 21:3 (1987), 11–21 | MR | Zbl
[5] Zhelobenko D. P., “Ekstremalnye proektory i obobschennye algebry Mikelsona nad reduktivnymi algebrami Li”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 758–763
[6] Zhelobenko D. P., Predstavleniya reduktivnykh algebr Li, Nauka, M., 1993 | MR
[7] Zhelobenko D. P., “On quantum analogue of universal enveloping algebras of Kac–Moody algebras”, Symmetry in Physics, Obninsk, 1991 | Zbl
[8] Zhelobenko D. P., “Contragredient algebras”, J. of Group Theory in Physics, 1:1 (1993), 210–236
[9] Zhelobenko D. P., “O kvantovykh metodakh v teorii predstavlenii reduktivnykh algebr Li”, Funkts. analiz i ego prilozh., 27:3 (1993), 1–12 | MR
[10] Kac V. G., Infinite Dimensional Lie Algebras, Univ. Press, Cambridge, 1985 | MR
[11] Kashiwara M., “Crystalizing the $q$-analogue of universal enveloping algebras”, Comm. Math. Phys., 133 (1990), 249–260 | DOI | MR | Zbl
[12] Kashiwara M., Crystalizing the $q$-analogue of universal enveloping algebras, RIMS preprint, 28, Kyoto, 1990 | MR
[13] Levendorskii S. Z., Soibelman Ya. S., “Some applications of quantum Weyl group”, J. of Geometry and Physics, 7:4 (1991), 1–14 | MR
[14] Lusztig G., “On quantum groups”, J. of Algebra, 131 (1990), 466–475 | DOI | MR | Zbl
[15] Lusztig G., Quantum groups at roots of 1, MIT preprint, 1989 | MR
[16] Lusztig G., “Quantum deformations of certain simple modules over enveloping algebras”, Adv. in Math., 70 (1988), 237–249 | DOI | MR | Zbl
[17] Lusztig G., “Canonical bases arizing from quantized enveloping algebras”, J. Amer. Math. Soc., 3 (1990), 447–498 | DOI | MR | Zbl
[18] Lusztig G., Canonical bases arizing from quantized enveloping algebras, II, MIT preprint, 1990 | MR
[19] Rosso M., “Finite dimensional representations of the quantum analog of the enveloping algebra of a complex semisimple Lie algebra”, Comm. Math. Phys., 117 (1988), 581–593 | DOI | MR | Zbl
[20] Soibelman Ya. S., “Algebra funktsii na kompaktnoi kvantovoi gruppe i ee predstavleniya”, Algebra i analiz, 2:1 (1990), 190–212 | MR | Zbl