The algebra of quantum bosons, theb Shubert filtration, and Lusztig bases
Izvestiya. Mathematics , Tome 43 (1994) no. 3, pp. 397-419.

Voir la notice de l'article provenant de la source Math-Net.Ru

The “Schubert filtration”, defined by means of the quantum Weyl group, is considered in Drinfel'd–Jimbo quantum algebras. A description is obtained for this filtration in terms of linear relations determined by the algebra of “quantum bosons”, and also in terms of certain projection operators. The connection between this filtration and Lusztig bases and Kashiwara crystal bases is considered.
@article{IM2_1994_43_3_a0,
     author = {D. P. Zhelobenko},
     title = {The algebra of quantum bosons, theb {Shubert} filtration, and {Lusztig} bases},
     journal = {Izvestiya. Mathematics },
     pages = {397--419},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a0/}
}
TY  - JOUR
AU  - D. P. Zhelobenko
TI  - The algebra of quantum bosons, theb Shubert filtration, and Lusztig bases
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 397
EP  - 419
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a0/
LA  - en
ID  - IM2_1994_43_3_a0
ER  - 
%0 Journal Article
%A D. P. Zhelobenko
%T The algebra of quantum bosons, theb Shubert filtration, and Lusztig bases
%J Izvestiya. Mathematics 
%D 1994
%P 397-419
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a0/
%G en
%F IM2_1994_43_3_a0
D. P. Zhelobenko. The algebra of quantum bosons, theb Shubert filtration, and Lusztig bases. Izvestiya. Mathematics , Tome 43 (1994) no. 3, pp. 397-419. http://geodesic.mathdoc.fr/item/IM2_1994_43_3_a0/

[1] Burbaki N., Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR | Zbl

[2] Jimbo M., “A $q$-difference analogue of and Yang–Baxter equation”, Lett. Math. Phys., 10 (1985), 63–69 | DOI | MR | Zbl

[3] Drinfeld V., “Algebry Khopfa i uravnenie Yanga–Bakstera”, DAN SSSR, 32 (1985), 254–258

[4] Zhelobenko D. P., “Ekstremalnye kotsikly na gruppe Veilya”, Funkts. analiz i ego prilozh., 21:3 (1987), 11–21 | MR | Zbl

[5] Zhelobenko D. P., “Ekstremalnye proektory i obobschennye algebry Mikelsona nad reduktivnymi algebrami Li”, Izv. AN SSSR. Ser. matem., 52:4 (1988), 758–763

[6] Zhelobenko D. P., Predstavleniya reduktivnykh algebr Li, Nauka, M., 1993 | MR

[7] Zhelobenko D. P., “On quantum analogue of universal enveloping algebras of Kac–Moody algebras”, Symmetry in Physics, Obninsk, 1991 | Zbl

[8] Zhelobenko D. P., “Contragredient algebras”, J. of Group Theory in Physics, 1:1 (1993), 210–236

[9] Zhelobenko D. P., “O kvantovykh metodakh v teorii predstavlenii reduktivnykh algebr Li”, Funkts. analiz i ego prilozh., 27:3 (1993), 1–12 | MR

[10] Kac V. G., Infinite Dimensional Lie Algebras, Univ. Press, Cambridge, 1985 | MR

[11] Kashiwara M., “Crystalizing the $q$-analogue of universal enveloping algebras”, Comm. Math. Phys., 133 (1990), 249–260 | DOI | MR | Zbl

[12] Kashiwara M., Crystalizing the $q$-analogue of universal enveloping algebras, RIMS preprint, 28, Kyoto, 1990 | MR

[13] Levendorskii S. Z., Soibelman Ya. S., “Some applications of quantum Weyl group”, J. of Geometry and Physics, 7:4 (1991), 1–14 | MR

[14] Lusztig G., “On quantum groups”, J. of Algebra, 131 (1990), 466–475 | DOI | MR | Zbl

[15] Lusztig G., Quantum groups at roots of 1, MIT preprint, 1989 | MR

[16] Lusztig G., “Quantum deformations of certain simple modules over enveloping algebras”, Adv. in Math., 70 (1988), 237–249 | DOI | MR | Zbl

[17] Lusztig G., “Canonical bases arizing from quantized enveloping algebras”, J. Amer. Math. Soc., 3 (1990), 447–498 | DOI | MR | Zbl

[18] Lusztig G., Canonical bases arizing from quantized enveloping algebras, II, MIT preprint, 1990 | MR

[19] Rosso M., “Finite dimensional representations of the quantum analog of the enveloping algebra of a complex semisimple Lie algebra”, Comm. Math. Phys., 117 (1988), 581–593 | DOI | MR | Zbl

[20] Soibelman Ya. S., “Algebra funktsii na kompaktnoi kvantovoi gruppe i ee predstavleniya”, Algebra i analiz, 2:1 (1990), 190–212 | MR | Zbl