On approximation of functions on the sphere
Izvestiya. Mathematics , Tome 43 (1994) no. 2, pp. 311-329

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S^n$ be the unit sphere in $\mathbf R^{n+1}$ ($n\geqslant 1$) with center at the origin of coordinates, and let $\|*\|_p$ be the norm in the space $L_p(S^n)$, $1\leqslant p\leqslant\infty$ $(L_\infty(S^n)\equiv C(S^n))$. Problems posed by Butzer, Johnen [4], and Wehrens (Approximationstheorie auf der Einheitskugel in $R^3$. Legendre-Transformationsmethoden und Anwendungen, Forschungsberichte Landes Nordrhein-Westfalen No. 3090, 1981) are solved; namely, a direct theorem on best approximation is proved for the modulus of smoothness of arbitrary (fractional) order $r$ $(r>0)$ $$ \omega_r(f;\tau)_p\colon=\sup_{0\leqslant\tau}\Big\|(E-\operatorname{sh}_t)^{r/2}f\Big\|_p,\qquad 0\tau\pi, $$ where $\operatorname{sh}_t$ is the shift operator on the sphere, $$ (\operatorname{sh}_tf)(\Theta)=\frac{\Gamma (n/2)}{2\pi^{n/2}(\sin t)^{n-1}}\int_{\Theta\cdot \mu=\cos t}f(\mu)\,dt(\mu),\qquad 0\pi, $$ and its equivalence to the $K$-functional is proved. Special cases of the results established were known from work of Kushnirenko, Butzer, and Johnen, Lofstrom and Peetre, Pawelke, Lizorkin and Nikol'skii, Kalyabin, and others.
@article{IM2_1994_43_2_a5,
     author = {Kh. P. Rustamov},
     title = {On approximation of functions on the sphere},
     journal = {Izvestiya. Mathematics },
     pages = {311--329},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_2_a5/}
}
TY  - JOUR
AU  - Kh. P. Rustamov
TI  - On approximation of functions on the sphere
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 311
EP  - 329
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_2_a5/
LA  - en
ID  - IM2_1994_43_2_a5
ER  - 
%0 Journal Article
%A Kh. P. Rustamov
%T On approximation of functions on the sphere
%J Izvestiya. Mathematics 
%D 1994
%P 311-329
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_2_a5/
%G en
%F IM2_1994_43_2_a5
Kh. P. Rustamov. On approximation of functions on the sphere. Izvestiya. Mathematics , Tome 43 (1994) no. 2, pp. 311-329. http://geodesic.mathdoc.fr/item/IM2_1994_43_2_a5/