On approximation of functions on the sphere
Izvestiya. Mathematics , Tome 43 (1994) no. 2, pp. 311-329.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S^n$ be the unit sphere in $\mathbf R^{n+1}$ ($n\geqslant 1$) with center at the origin of coordinates, and let $\|*\|_p$ be the norm in the space $L_p(S^n)$, $1\leqslant p\leqslant\infty$ $(L_\infty(S^n)\equiv C(S^n))$. Problems posed by Butzer, Johnen [4], and Wehrens (Approximationstheorie auf der Einheitskugel in $R^3$. Legendre-Transformationsmethoden und Anwendungen, Forschungsberichte Landes Nordrhein-Westfalen No. 3090, 1981) are solved; namely, a direct theorem on best approximation is proved for the modulus of smoothness of arbitrary (fractional) order $r$ $(r>0)$ $$ \omega_r(f;\tau)_p\colon=\sup_{0\leqslant\tau}\Big\|(E-\operatorname{sh}_t)^{r/2}f\Big\|_p,\qquad 0\tau\pi, $$ where $\operatorname{sh}_t$ is the shift operator on the sphere, $$ (\operatorname{sh}_tf)(\Theta)=\frac{\Gamma (n/2)}{2\pi^{n/2}(\sin t)^{n-1}}\int_{\Theta\cdot \mu=\cos t}f(\mu)\,dt(\mu),\qquad 0\pi, $$ and its equivalence to the $K$-functional is proved. Special cases of the results established were known from work of Kushnirenko, Butzer, and Johnen, Lofstrom and Peetre, Pawelke, Lizorkin and Nikol'skii, Kalyabin, and others.
@article{IM2_1994_43_2_a5,
     author = {Kh. P. Rustamov},
     title = {On approximation of functions on the sphere},
     journal = {Izvestiya. Mathematics },
     pages = {311--329},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_2_a5/}
}
TY  - JOUR
AU  - Kh. P. Rustamov
TI  - On approximation of functions on the sphere
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 311
EP  - 329
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_2_a5/
LA  - en
ID  - IM2_1994_43_2_a5
ER  - 
%0 Journal Article
%A Kh. P. Rustamov
%T On approximation of functions on the sphere
%J Izvestiya. Mathematics 
%D 1994
%P 311-329
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_2_a5/
%G en
%F IM2_1994_43_2_a5
Kh. P. Rustamov. On approximation of functions on the sphere. Izvestiya. Mathematics , Tome 43 (1994) no. 2, pp. 311-329. http://geodesic.mathdoc.fr/item/IM2_1994_43_2_a5/

[1] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987 | MR

[2] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | MR | Zbl

[3] Daugavet I. K., Vvedenie v teoriyu priblizheniya funktsii, LGU, L., 1977 | MR

[4] Butzer P. L., Johnen H., “Lipschitz spaces on compact manifolds”, J. Funct. Anal., 7:2 (1971), 242–266 | DOI | MR | Zbl

[5] Ragozin D. L., “Polynomial approximation on compact manifolds and homogeneous spaces”, Trans. Amer. Math. Soc., 150:1 (1971), 41–53 | DOI | MR

[6] Greenwald H. C., “Lipschitz spaces on the surface of the unit sphere in Euclidean $n$-space”, Pacif. J. Math., 50:1 (1974), 63–80 | MR | Zbl

[7] Nikolskii S. M., Lizorkin P. I., “Priblizhenie sfericheskimi polinomami”, Tr. MIAN, 166, 1984, 186–200 | MR

[8] Nikolskii S. M., Lizorkin P. I., “Funktsionalnye prostranstva na sfere, svyazannye s teoriei priblizhenii”, Matem. zametki, 41 (1987), 509–516 | MR

[9] Terekhin A. P., Teoremy ekvivalentnogo vlozheniya klassov funktsii so smeshannoi proizvodnoi, Dis. $\dots$ d-ra fiz.-matem. nauk, MIAN, M., 1986

[10] Rudin W., “Uniqueness theory for Laplace series”, Trans. Amer. Math. Soc., 68:2 (1950), 287–303 | DOI | MR | Zbl

[11] Berens H., Butzer P. L., Pawelke S., “Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren saturationsverhalten”, Publ. Res. Inst. Math. Sci. Ser. A., 4 (1968), 211–268 | MR

[12] Pawelke S., “Über die approximationsordnung bei Kugelfunktionen und algebraischen polynomen”, Tohoku Math. J., 24:3 (1972), 473–486 | DOI | MR | Zbl

[13] Dzhafarov Ar. S., “O sfericheskikh analogakh klassicheskikh teorem Dzh. Dzheksona i S. N. Bernshteina”, DAN SSSR, 203:2 (1972), 278–281 | Zbl

[14] Lizorkin P. I., Nikol'skii S. M., “A theorem concerning approximation on the sphere”, Anal. Math., 9 (1983), 207–221 | DOI | MR | Zbl

[15] Kalyabin G. A., “O modulyakh gladkosti funktsii, zadannykh na sfere”, DAN SSSR, 294:5 (1987), 1051–1054 | MR | Zbl

[16] Rustamov Kh. P., “O pryamykh i obratnykh teoremakh nailuchshego $L_p$-priblizheniya na sfere”, DAN SSSR, 294:4 (1987), 788–791 | MR | Zbl

[17] Rustamov Kh. P., “O vlozhenii nekotorykh klassov funktsii na sfere”, Tr. MIAN, 180, 1987, 188–190

[18] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[19] Kushnirenko G. G., “O priblizhenii funktsii, zadannykh na edinichnoi sfere, konechnymi sfericheskimi summami”, Nauchn. doklady vysshei shkoly. Ser. fiz.-matem. nauk, 1958, no. 4, 47–53 | Zbl

[20] Kushnirenko G. G., “Nekotorye voprosy priblizheniya nepreryvnykh funktsii na edinichnoi sfere konechnymi sfericheskimi summami”, Tr. Khark. politekhn. in-ta. Ser. inzh.-fiz., 256, no. 3, 1959, 3–22

[21] Dzhafarov Ar. S., “O poryadke nailuchshikh priblizhenii nepreryvnykh na edinichnoi sfere funktsii posredstvom konechnykh sfericheskikh summ”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, AN AzSSR, Baku, 1965, 46–52

[22] Zhidkov G. V., “Differentsialnye svoistva funktsii na sfere”, Differents. uravneniya, 19:12 (1983), 2090–2101 | MR

[23] Ivanov V. A., “K voprosu o svoistvakh modulei nepreryvnosti dlya funktsii na sfere”, Differents. uravneniya, 23:3 (1987), 481–487 | MR | Zbl

[24] Wehrens M., “Best approximation on the unit sphere in $\mathbf{R}^k$”, Funct. Anal. and Approximat., Proc. Conf. (Oberwolfach, Aug. 9–16, 1980), Basel, 1981, 233–245 | MR | Zbl

[25] Lofstrom J., Peetre J., “Approximation theorems connected with generalized translations”, Math. Ann., 181 (1969), 255–268 | DOI | MR

[26] Kogbetliantz E., “Recherches sur la commabilite de series ultraspheriques”, J. Math. Pures et Appl., 9 (1924), 107–187 | Zbl

[27] Bonami A., Clerk J.-L., “Sommes de Cesaro et multiplicateurs des devoloppements en harmoniques spheriques”, Trans. Amer. Math. Soc., 183:2 (1973), 223–263 | DOI | MR | Zbl

[28] Stein E. M., “Interpolation in polynomial classes and Markoffs inequality”, Duke Math. J., 24:3 (1957), 467–476 | DOI | MR | Zbl

[29] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. 2, Nauka, M., 1966 | MR

[30] Riesz M., “Eine trigonometrische Interpolationsformel und einiqe Ungleichungen für Polynome”, Deutsche Math. Ver., 23 (1914), 354–368 | Zbl

[31] Bernshtein S. N., “Rasprostranenie neravenstva S. B. Stechkina na tselye funktsii konechnoi stepeni”, DAN SSSR, 60:9 (1948), 1487–1490 | Zbl

[32] Nikolskii S. M., “Obobschenie odnogo neravenstva S. N. Bernshteina”, DAN SSSR, 60:9 (1948), 1507–1510 | MR

[33] Stechkin S. B., “Obobschenie nekotorykh neravenstv S. N. Bernshteina”, DAN SSSR, 60:9 (1948), 1511–1514 | Zbl

[34] Kamzolov A. M., “O nailuchshem priblizhenii klassov funktsii $W_p^\alpha(S^n)$ polinomami po sfericheskim garmonikam”, Matem. zametki, 32:3 (1982), 285–293 | MR | Zbl

[35] Butzer P. L., Stens R. L., Wehrens M., “Higher order moduli of continuity based on the Jacobi translation operator and best approximation”, C.R. Math. Rep. Acad. Sci. Canada, 11:2 (1980), 83–88 | MR

[36] Potapov M. K., Fedorov V. M., “O teoremakh Dzheksona dlya obobschennogo modulya gladkosti”, Tr. MIAN, 172, 1985, 291–298 | MR | Zbl

[37] Pawelke S., “Ein Satz vom Jacksonschen Typ für algebraische Polynome”, Acta Sci. Math., 33:3,4 (1972), 323–336 | MR | Zbl

[38] Stens R. L., Wehrens M., “Legendre transfonn methods and best approximation”, Rocz. Polsk. tow. Math. Ser. I, 21:2 (1979), 351–380 | MR | Zbl

[39] Rustamov Kh. P., “O priblizhenii funktsii na sfere”, DAN SSSR, 320:6 (1991), 1319–1325 | Zbl