Topology of the space of nondegenerate curves
Izvestiya. Mathematics , Tome 43 (1994) no. 2, pp. 291-310

Voir la notice de l'article provenant de la source Math-Net.Ru

A curve on a sphere or on a projective space is called nondegenerate if it has a nondegenerate moving frame at every point. The number of homotopy classes of closed nondegenerate curves immersed in the sphere or projective space is computed. In the case of the sphere $S^n$, this turns out to be 4 for odd $n\geqslant 3$ and 6 for even $n\geqslant 2$; in the case of the projective space $\mathbf P^n$, 10 for odd $n\geqslant 3$ and 3 for even $n\geqslant 2$.
@article{IM2_1994_43_2_a4,
     author = {M. Z. Shapiro},
     title = {Topology of the space of nondegenerate curves},
     journal = {Izvestiya. Mathematics },
     pages = {291--310},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_2_a4/}
}
TY  - JOUR
AU  - M. Z. Shapiro
TI  - Topology of the space of nondegenerate curves
JO  - Izvestiya. Mathematics 
PY  - 1994
SP  - 291
EP  - 310
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_2_a4/
LA  - en
ID  - IM2_1994_43_2_a4
ER  - 
%0 Journal Article
%A M. Z. Shapiro
%T Topology of the space of nondegenerate curves
%J Izvestiya. Mathematics 
%D 1994
%P 291-310
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_2_a4/
%G en
%F IM2_1994_43_2_a4
M. Z. Shapiro. Topology of the space of nondegenerate curves. Izvestiya. Mathematics , Tome 43 (1994) no. 2, pp. 291-310. http://geodesic.mathdoc.fr/item/IM2_1994_43_2_a4/