The Cauchy problem for hyperbolic Monge–Ampère equations
Izvestiya. Mathematics, Tome 43 (1994) no. 1, pp. 161-178 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article is devoted to Monge–Ampère equations with two independent variables. Here a definition of hyperbolicity is formulated that permits an extension of the class of hyperbolic Monge–Ampère equations and the inclusion of a number of equations with multiple haracteristics in this class. The definition is proved to be invariant under changes of variables. Equations hyperbolic in the sense of the new definition are reduced to corresponding systems in Riemann invariants. The existence and uniqueness of a local solution of the Cauchy problem is proved on the basis of this reduction.
@article{IM2_1994_43_1_a9,
     author = {D. V. Tunitsky},
     title = {The {Cauchy} problem for hyperbolic {Monge{\textendash}Amp\`ere} equations},
     journal = {Izvestiya. Mathematics},
     pages = {161--178},
     year = {1994},
     volume = {43},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a9/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - The Cauchy problem for hyperbolic Monge–Ampère equations
JO  - Izvestiya. Mathematics
PY  - 1994
SP  - 161
EP  - 178
VL  - 43
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a9/
LA  - en
ID  - IM2_1994_43_1_a9
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T The Cauchy problem for hyperbolic Monge–Ampère equations
%J Izvestiya. Mathematics
%D 1994
%P 161-178
%V 43
%N 1
%U http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a9/
%G en
%F IM2_1994_43_1_a9
D. V. Tunitsky. The Cauchy problem for hyperbolic Monge–Ampère equations. Izvestiya. Mathematics, Tome 43 (1994) no. 1, pp. 161-178. http://geodesic.mathdoc.fr/item/IM2_1994_43_1_a9/

[1] Kurant R., Uravneniya s chastnymi proizvodnymi, Mir, M., 1964 | MR

[2] Rozendorn E. R., “Priblizhennoe reshenie uravneniya balansa vetra i davleniya dlya antitsiklonov v tropicheskikh i subtropicheskikh shirotakh”, DAN SSSR, 253:3 (1980), 584–587 | MR

[3] Shikin E. V., “Zadacha izometricheskogo pogruzheniya i uravneniya Monzha–Ampera giperbolicheskogo tipa”, Sovremennye problemy geometrii i analiza. Tr. in-ta matematiki SO AN SSSR, 14, 1989, 245–258 | MR | Zbl

[4] Levi E. E., “Sul problema di Cauchy per le equazion lineari in due variabli a caratteristice reali, I-II”, Rend. Ist. Lombardo. Ser. 2, 41 (1908), 409–421, 691–712

[5] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR | Zbl

[6] Gilbert D., Osnovaniya geometrii, Gostekhizdat, M., L., 1948

[7] Tunitskii D. V., “O zadache Koshi dlya uravnenii Monzha–Ampera giperbolicheskogo tipa”, Matem. zametki, 51:6 (1992), 80–90 | MR

[8] Tunitskii D. V., Sistemy v rimanovykh invariantakh i uravneniya Monzha–Ampera, Dis.$\dots$ kand. fiz.-matem. nauk MGU, MGU, M., 1987

[9] Kartan E., Vneshnie differentsialnye sistemy i ikh geometricheskie prilozheniya, MGU, M., 1962

[10] Lychagin V. V., “Kontaktnaya geometriya i nelineinye differentsialnye uravneniya vtorogo poryadka”, UMN, 34:1(205) (1979), 137–165 | MR | Zbl

[11] Uorner F., Osnovy teorii gladkikh mnogoobrazii i grupp Li, Mir, M., 1987 | MR

[12] Rashevskii P. K., Geometricheskaya teoriya uravnenii s chastnymi proizvodnymi, Gostekhizdat, M., L., 1947

[13] Sternberg S., Lektsii po differentsialnoi geometrii, Mir, M., 1970 | MR | Zbl